Home | Metamath
Proof Explorer Theorem List (p. 168 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | vdwlem11 16701* | Lemma for vdw 16704. (Contributed by Mario Carneiro, 18-Aug-2014.) |
⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(𝐾 + 1) MonoAP 𝑓) | ||
Theorem | vdwlem12 16702 | Lemma for vdw 16704. 𝐾 = 2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014.) |
⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:(1...((♯‘𝑅) + 1))⟶𝑅) & ⊢ (𝜑 → ¬ 2 MonoAP 𝐹) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | vdwlem13 16703* | Lemma for vdw 16704. Main induction on 𝐾; 𝐾 = 0, 𝐾 = 1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.) |
⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) | ||
Theorem | vdw 16704* | Van der Waerden's theorem. For any finite coloring 𝑅 and integer 𝐾, there is an 𝑁 such that every coloring function from 1...𝑁 to 𝑅 contains a monochromatic arithmetic progression (which written out in full means that there is a color 𝑐 and base, increment values 𝑎, 𝑑 such that all the numbers 𝑎, 𝑎 + 𝑑, ..., 𝑎 + (𝑘 − 1)𝑑 lie in the preimage of {𝑐}, i.e. they are all in 1...𝑁 and 𝑓 evaluated at each one yields 𝑐). (Contributed by Mario Carneiro, 13-Sep-2014.) |
⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) | ||
Theorem | vdwnnlem1 16705* | Corollary of vdw 16704, and lemma for vdwnn 16708. If 𝐹 is a coloring of the integers, then there are arbitrarily long monochromatic APs in 𝐹. (Contributed by Mario Carneiro, 13-Sep-2014.) |
⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) | ||
Theorem | vdwnnlem2 16706* | Lemma for vdwnn 16708. The set of all "bad" 𝑘 for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014.) |
⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑅) & ⊢ 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})} ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐴 ∈ 𝑆 → 𝐵 ∈ 𝑆)) | ||
Theorem | vdwnnlem3 16707* | Lemma for vdwnn 16708. (Contributed by Mario Carneiro, 13-Sep-2014.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑅) & ⊢ 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})} & ⊢ (𝜑 → ∀𝑐 ∈ 𝑅 𝑆 ≠ ∅) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | vdwnn 16708* | Van der Waerden's theorem, infinitary version. For any finite coloring 𝐹 of the positive integers, there is a color 𝑐 that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014.) |
⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) | ||
Syntax | cram 16709 | Extend class notation with the Ramsey number function. |
class Ramsey | ||
Theorem | ramtlecl 16710* | The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.) |
⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ⇒ ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) | ||
Definition | df-ram 16711* | Define the Ramsey number function. The input is a number 𝑚 for the size of the edges of the hypergraph, and a tuple 𝑟 from the finite color set to lower bounds for each color. The Ramsey number (𝑀 Ramsey 𝑅) is the smallest number such that for any set 𝑆 with (𝑀 Ramsey 𝑅) ≤ ♯𝑆 and any coloring 𝐹 of the set of 𝑀-element subsets of 𝑆 (with color set dom 𝑅), there is a color 𝑐 ∈ dom 𝑅 and a subset 𝑥 ⊆ 𝑆 such that 𝑅(𝑐) ≤ ♯𝑥 and all the hyperedges of 𝑥 (that is, subsets of 𝑥 of size 𝑀) have color 𝑐. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
⊢ Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, < )) | ||
Theorem | hashbcval 16712* | Value of the "binomial set", the set of all 𝑁-element subsets of 𝐴. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) | ||
Theorem | hashbccl 16713* | The binomial set is a finite set. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) ∈ Fin) | ||
Theorem | hashbcss 16714* | Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁)) | ||
Theorem | hashbc0 16715* | The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {∅}) | ||
Theorem | hashbc2 16716* | The size of the binomial set is the binomial coefficient. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘(𝐴𝐶𝑁)) = ((♯‘𝐴)C𝑁)) | ||
Theorem | 0hashbc 16717* | There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ (𝑁 ∈ ℕ → (∅𝐶𝑁) = ∅) | ||
Theorem | ramval 16718* | The value of the Ramsey number function. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < )) | ||
Theorem | ramcl2lem 16719* | Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) | ||
Theorem | ramtcl 16720* | The Ramsey number has the Ramsey number property if any number does. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ 𝑇 ↔ 𝑇 ≠ ∅)) | ||
Theorem | ramtcl2 16721* | The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ 𝑇 ≠ ∅)) | ||
Theorem | ramtub 16722* | The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝐴 ∈ 𝑇) → (𝑀 Ramsey 𝐹) ≤ 𝐴) | ||
Theorem | ramub 16723* | The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) ⇒ ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁) | ||
Theorem | ramub2 16724* | It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ 𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) ⇒ ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁) | ||
Theorem | rami 16725* | The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆)) & ⊢ (𝜑 → 𝐺:(𝑆𝐶𝑀)⟶𝑅) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}))) | ||
Theorem | ramcl2 16726 | The Ramsey number is either a nonnegative integer or plus infinity. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞})) | ||
Theorem | ramxrcl 16727 | The Ramsey number is an extended real number. (This theorem does not imply Ramsey's theorem, unlike ramcl 16739.) (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℝ*) | ||
Theorem | ramubcl 16728 | If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0) | ||
Theorem | ramlb 16729* | Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐺:((1...𝑁)𝐶𝑀)⟶𝑅) & ⊢ ((𝜑 ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹‘𝑐))) ⇒ ⊢ (𝜑 → 𝑁 < (𝑀 Ramsey 𝐹)) | ||
Theorem | 0ram 16730* | The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) | ||
Theorem | 0ram2 16731 | The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) | ||
Theorem | ram0 16732 | The Ramsey number when 𝑅 = ∅. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀) | ||
Theorem | 0ramcl 16733 | Lemma for ramcl 16739: Existence of the Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0) | ||
Theorem | ramz2 16734 | The Ramsey number when 𝐹 has value zero for some color 𝐶. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0) | ||
Theorem | ramz 16735 | The Ramsey number when 𝐹 is the zero function. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0) | ||
Theorem | ramub1lem1 16736* | Lemma for ramub1 16738. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ) & ⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) & ⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) & ⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0) & ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1)) & ⊢ (𝜑 → 𝐾:(𝑆𝐶𝑀)⟶𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋}))) & ⊢ (𝜑 → 𝐷 ∈ 𝑅) & ⊢ (𝜑 → 𝑊 ⊆ (𝑆 ∖ {𝑋})) & ⊢ (𝜑 → (𝐺‘𝐷) ≤ (♯‘𝑊)) & ⊢ (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝐷})) & ⊢ (𝜑 → 𝐸 ∈ 𝑅) & ⊢ (𝜑 → 𝑉 ⊆ 𝑊) & ⊢ (𝜑 → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) ≤ (♯‘𝑉)) & ⊢ (𝜑 → (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) | ||
Theorem | ramub1lem2 16737* | Lemma for ramub1 16738. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ) & ⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) & ⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) & ⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0) & ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1)) & ⊢ (𝜑 → 𝐾:(𝑆𝐶𝑀)⟶𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋}))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐}))) | ||
Theorem | ramub1 16738* | Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ) & ⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) & ⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) & ⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1)) | ||
Theorem | ramcl 16739 | Ramsey's theorem: the Ramsey number is an integer for every finite coloring and set of upper bounds. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℕ0) | ||
Theorem | ramsey 16740* | Ramsey's theorem with the definition of Ramsey (df-ram 16711) eliminated. If 𝑀 is an integer, 𝑅 is a specified finite set of colors, and 𝐹:𝑅⟶ℕ0 is a set of lower bounds for each color, then there is an 𝑛 such that for every set 𝑠 of size greater than 𝑛 and every coloring 𝑓 of the set (𝑠𝐶𝑀) of all 𝑀-element subsets of 𝑠, there is a color 𝑐 and a subset 𝑥 ⊆ 𝑠 such that 𝑥 is larger than 𝐹(𝑐) and the 𝑀 -element subsets of 𝑥 are monochromatic with color 𝑐. This is the hypergraph version of Ramsey's theorem; the version for simple graphs is the case 𝑀 = 2. This is Metamath 100 proof #31. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑛 ∈ ℕ0 ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) | ||
According to Wikipedia "Primorial", https://en.wikipedia.org/wiki/Primorial (28-Aug-2020): "In mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying [all] positive integers [less than or equal to a given number], the function only multiplies [the] prime numbers [less than or equal to the given number]. The name "primorial", coined by Harvey Dubner, draws an analogy to primes similar to the way the name "factorial" relates to factors." | ||
Syntax | cprmo 16741 | Extend class notation to include the primorial of nonnegative integers. |
class #p | ||
Definition | df-prmo 16742* |
Define the primorial function on nonnegative integers as the product of
all prime numbers less than or equal to the integer. For example,
(#p‘10) = 2 · 3 · 5
· 7 = 210 (see ex-prmo 28832).
In the literature, the primorial function is written as a postscript hash: 6# = 30. In contrast to prmorcht 26336, where the primorial function is defined by using the sequence builder (𝑃 = seq1( · , 𝐹)), the more specialized definition of a product of a series is used here. (Contributed by AV, 28-Aug-2020.) |
⊢ #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) | ||
Theorem | prmoval 16743* | Value of the primorial function for nonnegative integers. (Contributed by AV, 28-Aug-2020.) |
⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) | ||
Theorem | prmocl 16744 | Closure of the primorial function. (Contributed by AV, 28-Aug-2020.) |
⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | ||
Theorem | prmone0 16745 | The primorial function is nonzero. (Contributed by AV, 28-Aug-2020.) |
⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≠ 0) | ||
Theorem | prmo0 16746 | The primorial of 0. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘0) = 1 | ||
Theorem | prmo1 16747 | The primorial of 1. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘1) = 1 | ||
Theorem | prmop1 16748 | The primorial of a successor. (Contributed by AV, 28-Aug-2020.) |
⊢ (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p‘𝑁) · (𝑁 + 1)), (#p‘𝑁))) | ||
Theorem | prmonn2 16749 | Value of the primorial function expressed recursively. (Contributed by AV, 28-Aug-2020.) |
⊢ (𝑁 ∈ ℕ → (#p‘𝑁) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1)))) | ||
Theorem | prmo2 16750 | The primorial of 2. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘2) = 2 | ||
Theorem | prmo3 16751 | The primorial of 3. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘3) = 6 | ||
Theorem | prmdvdsprmo 16752* | The primorial of a number is divisible by each prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.) |
⊢ (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁))) | ||
Theorem | prmdvdsprmop 16753* | The primorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by a prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) | ||
Theorem | fvprmselelfz 16754* | The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020.) |
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹‘𝑋) ∈ (1...𝑁)) | ||
Theorem | fvprmselgcd1 16755* | The greatest common divisor of two values of the prime selection function for different arguments is 1. (Contributed by AV, 19-Aug-2020.) |
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) ⇒ ⊢ ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1) | ||
Theorem | prmolefac 16756 | The primorial of a positive integer is less than or equal to the factorial of the integer. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (!‘𝑁)) | ||
Theorem | prmodvdslcmf 16757 | The primorial of a nonnegative integer divides the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∥ (lcm‘(1...𝑁))) | ||
Theorem | prmolelcmf 16758 | The primorial of a positive integer is less than or equal to the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (lcm‘(1...𝑁))) | ||
According to Wikipedia "Prime gap", https://en.wikipedia.org/wiki/Prime_gap (16-Aug-2020): "A prime gap is the difference between two successive prime numbers. The n-th prime gap, denoted gn or g(pn) is the difference between the (n+1)-th and the n-th prime numbers, i.e. gn = pn+1 - pn . We have g1 = 1, g2 = g3 = 2, and g4 = 4." It can be proven that there are arbitrary large gaps, usually by showing that "in the sequence n!+2, n!+3, ..., n!+n the first term is divisible by 2, the second term is divisible by 3, and so on. Thus, this is a sequence of n-1 consecutive composite integers, and it must belong to a gap between primes having length at least n.", see prmgap 16769. Instead of using the factorial of n (see df-fac 13997), any function can be chosen for which f(n) is not relatively prime to the integers 2, 3, ..., n. For example, the least common multiple of the integers 2, 3, ..., n, see prmgaplcm 16770, or the primorial n# (the product of all prime numbers less than or equal to n), see prmgapprmo 16772, are such functions, which provide smaller values than the factorial function (see lcmflefac 16362 and prmolefac 16756 resp. prmolelcmf 16758): "For instance, the first prime gap of size larger than 14 occurs between the primes 523 and 541, while 15! is the vastly larger number 1307674368000." But the least common multiple of the integers 2, 3, ..., 15 is 360360, and 15# is 30030 (p3248 = 30029 and P3249 = 30047, so g3248 = 18). | ||
Theorem | prmgaplem1 16759 | Lemma for prmgap 16769: The factorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by that integer. (Contributed by AV, 13-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((!‘𝑁) + 𝐼)) | ||
Theorem | prmgaplem2 16760 | Lemma for prmgap 16769: The factorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) | ||
Theorem | prmgaplcmlem1 16761 | Lemma for prmgaplcm 16770: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number is divisible by that integer. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼)) | ||
Theorem | prmgaplcmlem2 16762 | Lemma for prmgaplcm 16770: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)) | ||
Theorem | prmgaplem3 16763* | Lemma for prmgap 16769. (Contributed by AV, 9-Aug-2020.) |
⊢ 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
Theorem | prmgaplem4 16764* | Lemma for prmgap 16769. (Contributed by AV, 10-Aug-2020.) |
⊢ 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃)} ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | prmgaplem5 16765* | Lemma for prmgap 16769: for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ)) | ||
Theorem | prmgaplem6 16766* | Lemma for prmgap 16769: for each positive integer there is a greater prime closest to this integer, i.e. there is a greater prime and no other prime is between this prime and the integer. (Contributed by AV, 10-Aug-2020.) |
⊢ (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)) | ||
Theorem | prmgaplem7 16767* | Lemma for prmgap 16769. (Contributed by AV, 12-Aug-2020.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 ∈ (ℕ ↑m ℕ)) & ⊢ (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹‘𝑁) + 𝑖) gcd 𝑖)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 < ((𝐹‘𝑁) + 2) ∧ ((𝐹‘𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) | ||
Theorem | prmgaplem8 16768* | Lemma for prmgap 16769. (Contributed by AV, 13-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 ∈ (ℕ ↑m ℕ)) & ⊢ (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹‘𝑁) + 𝑖) gcd 𝑖)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) | ||
Theorem | prmgap 16769* | The prime gap theorem: for each positive integer there are (at least) two successive primes with a difference ("gap") at least as big as the given integer. (Contributed by AV, 13-Aug-2020.) |
⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) | ||
Theorem | prmgaplcm 16770* | Alternate proof of prmgap 16769: in contrast to prmgap 16769, where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) | ||
Theorem | prmgapprmolem 16771 | Lemma for prmgapprmo 16772: The primorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼)) | ||
Theorem | prmgapprmo 16772* | Alternate proof of prmgap 16769: in contrast to prmgap 16769, where the gap starts at n! , the factorial of n, the gap starts at n#, the primorial of n. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) | ||
Theorem | dec2dvds 16773 | Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 · 2) = 𝐶 & ⊢ 𝐷 = (𝐶 + 1) ⇒ ⊢ ¬ 2 ∥ ;𝐴𝐷 | ||
Theorem | dec5dvds 16774 | Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐵 < 5 ⇒ ⊢ ¬ 5 ∥ ;𝐴𝐵 | ||
Theorem | dec5dvds2 16775 | Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐵 < 5 & ⊢ (5 + 𝐵) = 𝐶 ⇒ ⊢ ¬ 5 ∥ ;𝐴𝐶 | ||
Theorem | dec5nprm 16776 | Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ ¬ ;𝐴5 ∈ ℙ | ||
Theorem | dec2nprm 16777 | Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 · 2) = 𝐶 ⇒ ⊢ ¬ ;𝐴𝐶 ∈ ℙ | ||
Theorem | modxai 16778 | Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) & ⊢ (𝐵 + 𝐶) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | mod2xi 16779 | Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (2 · 𝐵) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | modxp1i 16780 | Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (𝐵 + 1) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | mod2xnegi 16781 | Version of mod2xi 16779 with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐿 mod 𝑁) & ⊢ (2 · 𝐵) = 𝐸 & ⊢ (𝐿 + 𝐾) = 𝑁 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | modsubi 16782 | Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (𝑀 + 𝐵) = 𝐾 ⇒ ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | gcdi 16783 | Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.) |
⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ (𝑁 gcd 𝑅) = 𝐺 & ⊢ ((𝐾 · 𝑁) + 𝑅) = 𝑀 ⇒ ⊢ (𝑀 gcd 𝑁) = 𝐺 | ||
Theorem | gcdmodi 16784 | Calculate a GCD via Euclid's algorithm. Theorem 5.6 in [ApostolNT] p. 109. (Contributed by Mario Carneiro, 19-Feb-2014.) |
⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ & ⊢ (𝐾 mod 𝑁) = (𝑅 mod 𝑁) & ⊢ (𝑁 gcd 𝑅) = 𝐺 ⇒ ⊢ (𝐾 gcd 𝑁) = 𝐺 | ||
Theorem | decexp2 16785 | Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014.) |
⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 2) = 𝑁 ⇒ ⊢ ((4 · (2↑𝑀)) + 0) = (2↑𝑁) | ||
Theorem | numexp0 16786 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝐴↑0) = 1 | ||
Theorem | numexp1 16787 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝐴↑1) = 𝐴 | ||
Theorem | numexpp1 16788 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 1) = 𝑁 & ⊢ ((𝐴↑𝑀) · 𝐴) = 𝐶 ⇒ ⊢ (𝐴↑𝑁) = 𝐶 | ||
Theorem | numexp2x 16789 | Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (2 · 𝑀) = 𝑁 & ⊢ (𝐴↑𝑀) = 𝐷 & ⊢ (𝐷 · 𝐷) = 𝐶 ⇒ ⊢ (𝐴↑𝑁) = 𝐶 | ||
Theorem | decsplit0b 16790 | Split a decimal number into two parts. Base case: 𝑁 = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑0)) + 𝐵) = (𝐴 + 𝐵) | ||
Theorem | decsplit0 16791 | Split a decimal number into two parts. Base case: 𝑁 = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑0)) + 0) = 𝐴 | ||
Theorem | decsplit1 16792 | Split a decimal number into two parts. Base case: 𝑁 = 1. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑1)) + 𝐵) = ;𝐴𝐵 | ||
Theorem | decsplit 16793 | Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 1) = 𝑁 & ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 ⇒ ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 | ||
Theorem | karatsuba 16794 | The Karatsuba multiplication algorithm. If 𝑋 and 𝑌 are decomposed into two groups of digits of length 𝑀 (only the lower group is known to be this size but the algorithm is most efficient when the partition is chosen near the middle of the digit string), then 𝑋𝑌 can be written in three groups of digits, where each group needs only one multiplication. Thus, we can halve both inputs with only three multiplications on the smaller operands, yielding an asymptotic improvement of n^(log2 3) instead of n^2 for the "naive" algorithm decmul1c 12511. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑆 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐴 · 𝐶) = 𝑅 & ⊢ (𝐵 · 𝐷) = 𝑇 & ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇) & ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝑋 & ⊢ ((𝐶 · (;10↑𝑀)) + 𝐷) = 𝑌 & ⊢ ((𝑅 · (;10↑𝑀)) + 𝑆) = 𝑊 & ⊢ ((𝑊 · (;10↑𝑀)) + 𝑇) = 𝑍 ⇒ ⊢ (𝑋 · 𝑌) = 𝑍 | ||
Theorem | 2exp4 16795 | Two to the fourth power is 16. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (2↑4) = ;16 | ||
Theorem | 2exp5 16796 | Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021.) |
⊢ (2↑5) = ;32 | ||
Theorem | 2exp6 16797 | Two to the sixth power is 64. (Contributed by Mario Carneiro, 20-Apr-2015.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ (2↑6) = ;64 | ||
Theorem | 2exp7 16798 | Two to the seventh power is 128. (Contributed by AV, 16-Aug-2021.) |
⊢ (2↑7) = ;;128 | ||
Theorem | 2exp8 16799 | Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (2↑8) = ;;256 | ||
Theorem | 2exp11 16800 | Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
⊢ (2↑;11) = ;;;2048 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |