![]() |
Metamath
Proof Explorer Theorem List (p. 168 of 483) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30746) |
![]() (30747-32269) |
![]() (32270-48289) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rpexp12i 16701 | Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1)) | ||
Theorem | prmndvdsfaclt 16702 | A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → ¬ 𝑃 ∥ (!‘𝑁))) | ||
Theorem | prmdvdsbc 16703 | Condition for a prime number to divide a binomial coefficient. (Contributed by Thierry Arnoux, 17-Sep-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑁)) | ||
Theorem | prmdvdsncoprmbd 16704* | Two positive integers are not coprime iff a prime divides both integers. Deduction version of ncoprmgcdne1b 16626 with the existential quantifier over the primes instead of integers greater than or equal to 2. (Contributed by SN, 24-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (∃𝑝 ∈ ℙ (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) | ||
Theorem | ncoprmlnprm 16705 | If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ)) | ||
Theorem | cncongrprm 16706 | Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃))) | ||
Theorem | isevengcd2 16707 | The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.) |
⊢ (𝑍 ∈ ℤ → (2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 2)) | ||
Theorem | isoddgcd1 16708 | The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.) |
⊢ (𝑍 ∈ ℤ → (¬ 2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 1)) | ||
Theorem | 3lcm2e6 16709 | The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.) |
⊢ (3 lcm 2) = 6 | ||
Syntax | cnumer 16710 | Extend class notation to include canonical numerator function. |
class numer | ||
Syntax | cdenom 16711 | Extend class notation to include canonical denominator function. |
class denom | ||
Definition | df-numer 16712* | The canonical numerator of a rational is the numerator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ numer = (𝑦 ∈ ℚ ↦ (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Definition | df-denom 16713* | The canonical denominator of a rational is the denominator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ denom = (𝑦 ∈ ℚ ↦ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Theorem | qnumval 16714* | Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Theorem | qdenval 16715* | Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Theorem | qnumdencl 16716 | Lemma for qnumcl 16717 and qdencl 16718. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ)) | ||
Theorem | qnumcl 16717 | The canonical numerator of a rational is an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | ||
Theorem | qdencl 16718 | The canonical denominator is a positive integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | ||
Theorem | fnum 16719 | Canonical numerator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ numer:ℚ⟶ℤ | ||
Theorem | fden 16720 | Canonical denominator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ denom:ℚ⟶ℕ | ||
Theorem | qnumdenbi 16721 | Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶))) | ||
Theorem | qnumdencoprm 16722 | The canonical representation of a rational is fully reduced. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | ||
Theorem | qeqnumdivden 16723 | Recover a rational number from its canonical representation. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | ||
Theorem | qmuldeneqnum 16724 | Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (𝐴 · (denom‘𝐴)) = (numer‘𝐴)) | ||
Theorem | divnumden 16725 | Calculate the reduced form of a quotient using gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))) | ||
Theorem | divdenle 16726 | Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵) | ||
Theorem | qnumgt0 16727 | A rational is positive iff its canonical numerator is. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (0 < 𝐴 ↔ 0 < (numer‘𝐴))) | ||
Theorem | qgt0numnn 16728 | A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → (numer‘𝐴) ∈ ℕ) | ||
Theorem | nn0gcdsq 16729 | Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2))) | ||
Theorem | zgcdsq 16730 | nn0gcdsq 16729 extended to integers by symmetry. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2))) | ||
Theorem | numdensq 16731 | Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) | ||
Theorem | numsq 16732 | Square commutes with canonical numerator. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (numer‘(𝐴↑2)) = ((numer‘𝐴)↑2)) | ||
Theorem | densq 16733 | Square commutes with canonical denominator. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)) | ||
Theorem | qden1elz 16734 | A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | ||
Theorem | zsqrtelqelz 16735 | If an integer has a rational square root, that root is must be an integer. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) | ||
Theorem | nonsq 16736 | Any integer strictly between two adjacent squares has an irrational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ) | ||
Syntax | codz 16737 | Extend class notation with the order function on the class of integers modulo N. |
class odℤ | ||
Syntax | cphi 16738 | Extend class notation with the Euler phi function. |
class ϕ | ||
Definition | df-odz 16739* | Define the order function on the class of integers modulo N. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.) |
⊢ odℤ = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥↑𝑚) − 1)}, ℝ, < ))) | ||
Definition | df-phi 16740* | Define the Euler phi function (also called "Euler totient function"), which counts the number of integers less than 𝑛 and coprime to it, see definition in [ApostolNT] p. 25. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1})) | ||
Theorem | phival 16741* | Value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) | ||
Theorem | phicl2 16742 | Bounds and closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ (1...𝑁)) | ||
Theorem | phicl 16743 | Closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | ||
Theorem | phibndlem 16744* | Lemma for phibnd 16745. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) | ||
Theorem | phibnd 16745 | A slightly tighter bound on the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1)) | ||
Theorem | phicld 16746 | Closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (ϕ‘𝑁) ∈ ℕ) | ||
Theorem | phi1 16747 | Value of the Euler ϕ function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (ϕ‘1) = 1 | ||
Theorem | dfphi2 16748* | Alternate definition of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})) | ||
Theorem | hashdvds 16749* | The number of numbers in a given residue class in a finite set of integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘(𝐴 − 1))) & ⊢ (𝜑 → 𝐶 ∈ ℤ) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) | ||
Theorem | phiprmpw 16750 | Value of the Euler ϕ function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃↑𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1))) | ||
Theorem | phiprm 16751 | Value of the Euler ϕ function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1)) | ||
Theorem | crth 16752* | The Chinese Remainder Theorem: the function that maps 𝑥 to its remainder classes mod 𝑀 and mod 𝑁 is 1-1 and onto when 𝑀 and 𝑁 are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.) |
⊢ 𝑆 = (0..^(𝑀 · 𝑁)) & ⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ⇒ ⊢ (𝜑 → 𝐹:𝑆–1-1-onto→𝑇) | ||
Theorem | phimullem 16753* | Lemma for phimul 16754. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ 𝑆 = (0..^(𝑀 · 𝑁)) & ⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) & ⊢ 𝑈 = {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} & ⊢ 𝑉 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ 𝑊 = {𝑦 ∈ 𝑆 ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1} ⇒ ⊢ (𝜑 → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁))) | ||
Theorem | phimul 16754 | The Euler ϕ function is a multiplicative function, meaning that it distributes over multiplication at relatively prime arguments. Theorem 2.5(c) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁))) | ||
Theorem | eulerthlem1 16755* | Lemma for eulerth 16757. (Contributed by Mario Carneiro, 8-May-2015.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ 𝑇 = (1...(ϕ‘𝑁)) & ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) & ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) ⇒ ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) | ||
Theorem | eulerthlem2 16756* | Lemma for eulerth 16757. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ 𝑇 = (1...(ϕ‘𝑁)) & ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) & ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) ⇒ ⊢ (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | ||
Theorem | eulerth 16757 | Euler's theorem, a generalization of Fermat's little theorem. If 𝐴 and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | ||
Theorem | fermltl 16758 | Fermat's little theorem. When 𝑃 is prime, 𝐴↑𝑃≡𝐴 (mod 𝑃) for any 𝐴, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑𝑃) mod 𝑃) = (𝐴 mod 𝑃)) | ||
Theorem | prmdiv 16759 | Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) | ||
Theorem | prmdiveq 16760 | The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅)) | ||
Theorem | prmdivdiv 16761 | The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) | ||
Theorem | hashgcdlem 16762* | A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} & ⊢ 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁} & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝑥 · 𝑁)) ⇒ ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝐹:𝐴–1-1-onto→𝐵) | ||
Theorem | hashgcdeq 16763* | Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁 ∥ 𝑀, (ϕ‘(𝑀 / 𝑁)), 0)) | ||
Theorem | phisum 16764* | The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘𝑑) = 𝑁) | ||
Theorem | odzval 16765* | Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod 𝑁 for some 𝑁, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod 𝑁. In order to ensure the supremum is well-defined, we only define the expression when 𝐴 and 𝑁 are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < )) | ||
Theorem | odzcllem 16766 | - Lemma for odzcl 16767, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) | ||
Theorem | odzcl 16767 | The order of a group element is an integer. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∈ ℕ) | ||
Theorem | odzid 16768 | Any element raised to the power of its order is 1. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) | ||
Theorem | odzdvds 16769 | The only powers of 𝐴 that are congruent to 1 are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑𝐾) − 1) ↔ ((odℤ‘𝑁)‘𝐴) ∥ 𝐾)) | ||
Theorem | odzphi 16770 | The order of any group element is a divisor of the Euler ϕ function. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∥ (ϕ‘𝑁)) | ||
Theorem | modprm1div 16771 | A prime number divides an integer minus 1 iff the integer modulo the prime number is 1. (Contributed by Alexander van der Vekens, 17-May-2018.) (Proof shortened by AV, 30-May-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1))) | ||
Theorem | m1dvdsndvds 16772 | If an integer minus 1 is divisible by a prime number, the integer itself is not divisible by this prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ¬ 𝑃 ∥ 𝐴)) | ||
Theorem | modprminv 16773 | Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. This is an application of prmdiv 16759. (Contributed by Alexander van der Vekens, 15-May-2018.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1)) | ||
Theorem | modprminveq 16774 | The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ ((𝐴 · 𝑆) mod 𝑃) = 1) ↔ 𝑆 = 𝑅)) | ||
Theorem | vfermltl 16775 | Variant of Fermat's little theorem if 𝐴 is not a multiple of 𝑃, see theorem 5.18 in [ApostolNT] p. 113. (Contributed by AV, 21-Aug-2020.) (Proof shortened by AV, 5-Sep-2020.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1) | ||
Theorem | vfermltlALT 16776 | Alternate proof of vfermltl 16775, not using Euler's theorem. (Contributed by AV, 21-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1) | ||
Theorem | powm2modprm 16777 | If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1)) | ||
Theorem | reumodprminv 16778* | For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1) | ||
Theorem | modprm0 16779* | For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0) | ||
Theorem | nnnn0modprm0 16780* | For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0) | ||
Theorem | modprmn0modprm0 16781* | For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)) | ||
Theorem | coprimeprodsq 16782 | If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2))) | ||
Theorem | coprimeprodsq2 16783 | If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) | ||
Theorem | oddprm 16784 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
Theorem | nnoddn2prm 16785 | A prime not equal to 2 is an odd positive integer. (Contributed by AV, 28-Jun-2021.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) | ||
Theorem | oddn2prm 16786 | A prime not equal to 2 is odd. (Contributed by AV, 28-Jun-2021.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁) | ||
Theorem | nnoddn2prmb 16787 | A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁)) | ||
Theorem | prm23lt5 16788 | A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3)) | ||
Theorem | prm23ge5 16789 | A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021.) |
⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | ||
Theorem | pythagtriplem1 16790* | Lemma for pythagtrip 16808. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | ||
Theorem | pythagtriplem2 16791* | Lemma for pythagtrip 16808. Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))) | ||
Theorem | pythagtriplem3 16792 | Lemma for pythagtrip 16808. Show that 𝐶 and 𝐵 are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1) | ||
Theorem | pythagtriplem4 16793 | Lemma for pythagtrip 16808. Show that 𝐶 − 𝐵 and 𝐶 + 𝐵 are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1) | ||
Theorem | pythagtriplem10 16794 | Lemma for pythagtrip 16808. Show that 𝐶 − 𝐵 is positive. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) | ||
Theorem | pythagtriplem6 16795 | Lemma for pythagtrip 16808. Calculate (√‘(𝐶 − 𝐵)). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) = ((𝐶 − 𝐵) gcd 𝐴)) | ||
Theorem | pythagtriplem7 16796 | Lemma for pythagtrip 16808. Calculate (√‘(𝐶 + 𝐵)). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) = ((𝐶 + 𝐵) gcd 𝐴)) | ||
Theorem | pythagtriplem8 16797 | Lemma for pythagtrip 16808. Show that (√‘(𝐶 − 𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) | ||
Theorem | pythagtriplem9 16798 | Lemma for pythagtrip 16808. Show that (√‘(𝐶 + 𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℕ) | ||
Theorem | pythagtriplem11 16799 | Lemma for pythagtrip 16808. Show that 𝑀 (which will eventually be closely related to the 𝑚 in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ) | ||
Theorem | pythagtriplem12 16800 | Lemma for pythagtrip 16808. Calculate the square of 𝑀. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀↑2) = ((𝐶 + 𝐴) / 2)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |