MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc0 Structured version   Visualization version   GIF version

Theorem pc0 15930
Description: The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc0 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)

Proof of Theorem pc0
Dummy variables 𝑥 𝑦 𝑛 𝑝 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 11715 . . 3 0 ∈ ℤ
2 zq 12077 . . 3 (0 ∈ ℤ → 0 ∈ ℚ)
31, 2ax-mp 5 . 2 0 ∈ ℚ
4 iftrue 4312 . . . 4 (𝑟 = 0 → if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))) = +∞)
54adantl 475 . . 3 ((𝑝 = 𝑃𝑟 = 0) → if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))) = +∞)
6 df-pc 15913 . . 3 pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))))
7 pnfex 10409 . . 3 +∞ ∈ V
85, 6, 7ovmpt2a 7051 . 2 ((𝑃 ∈ ℙ ∧ 0 ∈ ℚ) → (𝑃 pCnt 0) = +∞)
93, 8mpan2 684 1 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wrex 3118  {crab 3121  ifcif 4306   class class class wbr 4873  cio 6084  (class class class)co 6905  supcsup 8615  cr 10251  0cc0 10252  +∞cpnf 10388   < clt 10391  cmin 10585   / cdiv 11009  cn 11350  0cn0 11618  cz 11704  cq 12071  cexp 13154  cdvds 15357  cprime 15757   pCnt cpc 15912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-z 11705  df-q 12072  df-pc 15913
This theorem is referenced by:  pcxcl  15936  pcge0  15937  pcdvdsb  15944  pcgcd1  15952  pc2dvds  15954  pcaddlem  15963  pcadd  15964
  Copyright terms: Public domain W3C validator