MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcval Structured version   Visualization version   GIF version

Theorem pcval 16716
Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Hypotheses
Ref Expression
pcval.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
pcval.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
Assertion
Ref Expression
pcval ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑧,𝑁   𝑃,𝑛,𝑥,𝑦,𝑧   𝑧,𝑆   𝑧,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem pcval
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 ((𝑝 = 𝑃𝑟 = 𝑁) → 𝑟 = 𝑁)
21eqeq1d 2738 . . . . 5 ((𝑝 = 𝑃𝑟 = 𝑁) → (𝑟 = 0 ↔ 𝑁 = 0))
3 eqeq1 2740 . . . . . . . 8 (𝑟 = 𝑁 → (𝑟 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑥 / 𝑦)))
4 oveq1 7364 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝𝑛) = (𝑃𝑛))
54breq1d 5115 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝑥))
65rabbidv 3415 . . . . . . . . . . . 12 (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥})
76supeq1d 9382 . . . . . . . . . . 11 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ))
8 pcval.1 . . . . . . . . . . 11 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
97, 8eqtr4di 2794 . . . . . . . . . 10 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) = 𝑆)
104breq1d 5115 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 𝑦))
1110rabbidv 3415 . . . . . . . . . . . 12 (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦})
1211supeq1d 9382 . . . . . . . . . . 11 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))
13 pcval.2 . . . . . . . . . . 11 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
1412, 13eqtr4di 2794 . . . . . . . . . 10 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ) = 𝑇)
159, 14oveq12d 7375 . . . . . . . . 9 (𝑝 = 𝑃 → (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆𝑇))
1615eqeq2d 2747 . . . . . . . 8 (𝑝 = 𝑃 → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑧 = (𝑆𝑇)))
173, 16bi2anan9r 638 . . . . . . 7 ((𝑝 = 𝑃𝑟 = 𝑁) → ((𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
18172rexbidv 3213 . . . . . 6 ((𝑝 = 𝑃𝑟 = 𝑁) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
1918iotabidv 6480 . . . . 5 ((𝑝 = 𝑃𝑟 = 𝑁) → (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )))) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
202, 19ifbieq2d 4512 . . . 4 ((𝑝 = 𝑃𝑟 = 𝑁) → if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))) = if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))))
21 df-pc 16709 . . . 4 pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))))
22 pnfex 11208 . . . . 5 +∞ ∈ V
23 iotaex 6469 . . . . 5 (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∈ V
2422, 23ifex 4536 . . . 4 if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))) ∈ V
2520, 21, 24ovmpoa 7510 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) = if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))))
26 ifnefalse 4498 . . 3 (𝑁 ≠ 0 → if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
2725, 26sylan9eq 2796 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
2827anasss 467 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  {crab 3407  ifcif 4486   class class class wbr 5105  cio 6446  (class class class)co 7357  supcsup 9376  cr 11050  0cc0 11051  +∞cpnf 11186   < clt 11189  cmin 11385   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  cq 12873  cexp 13967  cdvds 16136  cprime 16547   pCnt cpc 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-sup 9378  df-pnf 11191  df-pc 16709
This theorem is referenced by:  pczpre  16719  pcdiv  16724
  Copyright terms: Public domain W3C validator