Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → 𝑟 = 𝑁) |
2 | 1 | eqeq1d 2740 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → (𝑟 = 0 ↔ 𝑁 = 0)) |
3 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑟 = 𝑁 → (𝑟 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑥 / 𝑦))) |
4 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑃 → (𝑝↑𝑛) = (𝑃↑𝑛)) |
5 | 4 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑃 → ((𝑝↑𝑛) ∥ 𝑥 ↔ (𝑃↑𝑛) ∥ 𝑥)) |
6 | 5 | rabbidv 3404 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}) |
7 | 6 | supeq1d 9135 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < )) |
8 | | pcval.1 |
. . . . . . . . . . 11
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) = 𝑆) |
10 | 4 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑃 → ((𝑝↑𝑛) ∥ 𝑦 ↔ (𝑃↑𝑛) ∥ 𝑦)) |
11 | 10 | rabbidv 3404 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}) |
12 | 11 | supeq1d 9135 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) |
13 | | pcval.2 |
. . . . . . . . . . 11
⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) |
14 | 12, 13 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ) = 𝑇) |
15 | 9, 14 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆 − 𝑇)) |
16 | 15 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑧 = (𝑆 − 𝑇))) |
17 | 3, 16 | bi2anan9r 636 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → ((𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
18 | 17 | 2rexbidv 3228 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
19 | 18 | iotabidv 6402 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
20 | 2, 19 | ifbieq2d 4482 |
. . . 4
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))))) = if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))))) |
21 | | df-pc 16466 |
. . . 4
⊢ pCnt =
(𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |
22 | | pnfex 10959 |
. . . . 5
⊢ +∞
∈ V |
23 | | iotaex 6398 |
. . . . 5
⊢
(℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∈ V |
24 | 22, 23 | ifex 4506 |
. . . 4
⊢ if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) ∈ V |
25 | 20, 21, 24 | ovmpoa 7406 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) = if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))))) |
26 | | ifnefalse 4468 |
. . 3
⊢ (𝑁 ≠ 0 → if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
27 | 25, 26 | sylan9eq 2799 |
. 2
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
28 | 27 | anasss 466 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |