MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcval Structured version   Visualization version   GIF version

Theorem pcval 16891
Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Hypotheses
Ref Expression
pcval.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
pcval.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
Assertion
Ref Expression
pcval ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑧,𝑁   𝑃,𝑛,𝑥,𝑦,𝑧   𝑧,𝑆   𝑧,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem pcval
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝑝 = 𝑃𝑟 = 𝑁) → 𝑟 = 𝑁)
21eqeq1d 2742 . . . . 5 ((𝑝 = 𝑃𝑟 = 𝑁) → (𝑟 = 0 ↔ 𝑁 = 0))
3 eqeq1 2744 . . . . . . . 8 (𝑟 = 𝑁 → (𝑟 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑥 / 𝑦)))
4 oveq1 7455 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝𝑛) = (𝑃𝑛))
54breq1d 5176 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝑥))
65rabbidv 3451 . . . . . . . . . . . 12 (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥})
76supeq1d 9515 . . . . . . . . . . 11 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ))
8 pcval.1 . . . . . . . . . . 11 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
97, 8eqtr4di 2798 . . . . . . . . . 10 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) = 𝑆)
104breq1d 5176 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 𝑦))
1110rabbidv 3451 . . . . . . . . . . . 12 (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦})
1211supeq1d 9515 . . . . . . . . . . 11 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))
13 pcval.2 . . . . . . . . . . 11 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
1412, 13eqtr4di 2798 . . . . . . . . . 10 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ) = 𝑇)
159, 14oveq12d 7466 . . . . . . . . 9 (𝑝 = 𝑃 → (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆𝑇))
1615eqeq2d 2751 . . . . . . . 8 (𝑝 = 𝑃 → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑧 = (𝑆𝑇)))
173, 16bi2anan9r 638 . . . . . . 7 ((𝑝 = 𝑃𝑟 = 𝑁) → ((𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
18172rexbidv 3228 . . . . . 6 ((𝑝 = 𝑃𝑟 = 𝑁) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
1918iotabidv 6557 . . . . 5 ((𝑝 = 𝑃𝑟 = 𝑁) → (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )))) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
202, 19ifbieq2d 4574 . . . 4 ((𝑝 = 𝑃𝑟 = 𝑁) → if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))) = if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))))
21 df-pc 16884 . . . 4 pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))))
22 pnfex 11343 . . . . 5 +∞ ∈ V
23 iotaex 6546 . . . . 5 (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∈ V
2422, 23ifex 4598 . . . 4 if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))) ∈ V
2520, 21, 24ovmpoa 7605 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) = if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))))
26 ifnefalse 4560 . . 3 (𝑁 ≠ 0 → if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
2725, 26sylan9eq 2800 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
2827anasss 466 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  ifcif 4548   class class class wbr 5166  cio 6523  (class class class)co 7448  supcsup 9509  cr 11183  0cc0 11184  +∞cpnf 11321   < clt 11324  cmin 11520   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cq 13013  cexp 14112  cdvds 16302  cprime 16718   pCnt cpc 16883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-sup 9511  df-pnf 11326  df-pc 16884
This theorem is referenced by:  pczpre  16894  pcdiv  16899
  Copyright terms: Public domain W3C validator