Detailed syntax breakdown of Definition df-pconn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cpconn 35225 | . 2
class
PConn | 
| 2 |  | cc0 11156 | . . . . . . . . 9
class
0 | 
| 3 |  | vf | . . . . . . . . . 10
setvar 𝑓 | 
| 4 | 3 | cv 1538 | . . . . . . . . 9
class 𝑓 | 
| 5 | 2, 4 | cfv 6560 | . . . . . . . 8
class (𝑓‘0) | 
| 6 |  | vx | . . . . . . . . 9
setvar 𝑥 | 
| 7 | 6 | cv 1538 | . . . . . . . 8
class 𝑥 | 
| 8 | 5, 7 | wceq 1539 | . . . . . . 7
wff (𝑓‘0) = 𝑥 | 
| 9 |  | c1 11157 | . . . . . . . . 9
class
1 | 
| 10 | 9, 4 | cfv 6560 | . . . . . . . 8
class (𝑓‘1) | 
| 11 |  | vy | . . . . . . . . 9
setvar 𝑦 | 
| 12 | 11 | cv 1538 | . . . . . . . 8
class 𝑦 | 
| 13 | 10, 12 | wceq 1539 | . . . . . . 7
wff (𝑓‘1) = 𝑦 | 
| 14 | 8, 13 | wa 395 | . . . . . 6
wff ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) | 
| 15 |  | cii 24902 | . . . . . . 7
class
II | 
| 16 |  | vj | . . . . . . . 8
setvar 𝑗 | 
| 17 | 16 | cv 1538 | . . . . . . 7
class 𝑗 | 
| 18 |  | ccn 23233 | . . . . . . 7
class 
Cn | 
| 19 | 15, 17, 18 | co 7432 | . . . . . 6
class (II Cn
𝑗) | 
| 20 | 14, 3, 19 | wrex 3069 | . . . . 5
wff
∃𝑓 ∈ (II
Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) | 
| 21 | 17 | cuni 4906 | . . . . 5
class ∪ 𝑗 | 
| 22 | 20, 11, 21 | wral 3060 | . . . 4
wff
∀𝑦 ∈
∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) | 
| 23 | 22, 6, 21 | wral 3060 | . . 3
wff
∀𝑥 ∈
∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) | 
| 24 |  | ctop 22900 | . . 3
class
Top | 
| 25 | 23, 16, 24 | crab 3435 | . 2
class {𝑗 ∈ Top ∣
∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} | 
| 26 | 1, 25 | wceq 1539 | 1
wff PConn =
{𝑗 ∈ Top ∣
∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} |