Detailed syntax breakdown of Definition df-pconn
Step | Hyp | Ref
| Expression |
1 | | cpconn 33081 |
. 2
class
PConn |
2 | | cc0 10802 |
. . . . . . . . 9
class
0 |
3 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
4 | 3 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
5 | 2, 4 | cfv 6418 |
. . . . . . . 8
class (𝑓‘0) |
6 | | vx |
. . . . . . . . 9
setvar 𝑥 |
7 | 6 | cv 1538 |
. . . . . . . 8
class 𝑥 |
8 | 5, 7 | wceq 1539 |
. . . . . . 7
wff (𝑓‘0) = 𝑥 |
9 | | c1 10803 |
. . . . . . . . 9
class
1 |
10 | 9, 4 | cfv 6418 |
. . . . . . . 8
class (𝑓‘1) |
11 | | vy |
. . . . . . . . 9
setvar 𝑦 |
12 | 11 | cv 1538 |
. . . . . . . 8
class 𝑦 |
13 | 10, 12 | wceq 1539 |
. . . . . . 7
wff (𝑓‘1) = 𝑦 |
14 | 8, 13 | wa 395 |
. . . . . 6
wff ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
15 | | cii 23944 |
. . . . . . 7
class
II |
16 | | vj |
. . . . . . . 8
setvar 𝑗 |
17 | 16 | cv 1538 |
. . . . . . 7
class 𝑗 |
18 | | ccn 22283 |
. . . . . . 7
class
Cn |
19 | 15, 17, 18 | co 7255 |
. . . . . 6
class (II Cn
𝑗) |
20 | 14, 3, 19 | wrex 3064 |
. . . . 5
wff
∃𝑓 ∈ (II
Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
21 | 17 | cuni 4836 |
. . . . 5
class ∪ 𝑗 |
22 | 20, 11, 21 | wral 3063 |
. . . 4
wff
∀𝑦 ∈
∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
23 | 22, 6, 21 | wral 3063 |
. . 3
wff
∀𝑥 ∈
∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
24 | | ctop 21950 |
. . 3
class
Top |
25 | 23, 16, 24 | crab 3067 |
. 2
class {𝑗 ∈ Top ∣
∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} |
26 | 1, 25 | wceq 1539 |
1
wff PConn =
{𝑗 ∈ Top ∣
∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} |