Detailed syntax breakdown of Definition df-pconn
| Step | Hyp | Ref
| Expression |
| 1 | | cpconn 35213 |
. 2
class
PConn |
| 2 | | cc0 11075 |
. . . . . . . . 9
class
0 |
| 3 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 4 | 3 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 5 | 2, 4 | cfv 6514 |
. . . . . . . 8
class (𝑓‘0) |
| 6 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 7 | 6 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 8 | 5, 7 | wceq 1540 |
. . . . . . 7
wff (𝑓‘0) = 𝑥 |
| 9 | | c1 11076 |
. . . . . . . . 9
class
1 |
| 10 | 9, 4 | cfv 6514 |
. . . . . . . 8
class (𝑓‘1) |
| 11 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 12 | 11 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 13 | 10, 12 | wceq 1540 |
. . . . . . 7
wff (𝑓‘1) = 𝑦 |
| 14 | 8, 13 | wa 395 |
. . . . . 6
wff ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
| 15 | | cii 24775 |
. . . . . . 7
class
II |
| 16 | | vj |
. . . . . . . 8
setvar 𝑗 |
| 17 | 16 | cv 1539 |
. . . . . . 7
class 𝑗 |
| 18 | | ccn 23118 |
. . . . . . 7
class
Cn |
| 19 | 15, 17, 18 | co 7390 |
. . . . . 6
class (II Cn
𝑗) |
| 20 | 14, 3, 19 | wrex 3054 |
. . . . 5
wff
∃𝑓 ∈ (II
Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
| 21 | 17 | cuni 4874 |
. . . . 5
class ∪ 𝑗 |
| 22 | 20, 11, 21 | wral 3045 |
. . . 4
wff
∀𝑦 ∈
∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
| 23 | 22, 6, 21 | wral 3045 |
. . 3
wff
∀𝑥 ∈
∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
| 24 | | ctop 22787 |
. . 3
class
Top |
| 25 | 23, 16, 24 | crab 3408 |
. 2
class {𝑗 ∈ Top ∣
∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} |
| 26 | 1, 25 | wceq 1540 |
1
wff PConn =
{𝑗 ∈ Top ∣
∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} |