![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispconn | Structured version Visualization version GIF version |
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
ispconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ispconn | ⊢ (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4681 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
2 | ispconn.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | syl6eqr 2832 | . . 3 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
4 | oveq2 6932 | . . . . 5 ⊢ (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽)) | |
5 | 4 | rexeqdv 3341 | . . . 4 ⊢ (𝑗 = 𝐽 → (∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
6 | 3, 5 | raleqbidv 3326 | . . 3 ⊢ (𝑗 = 𝐽 → (∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
7 | 3, 6 | raleqbidv 3326 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
8 | df-pconn 31810 | . 2 ⊢ PConn = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} | |
9 | 7, 8 | elrab2 3576 | 1 ⊢ (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∃wrex 3091 ∪ cuni 4673 ‘cfv 6137 (class class class)co 6924 0cc0 10274 1c1 10275 Topctop 21116 Cn ccn 21447 IIcii 23097 PConncpconn 31808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-iota 6101 df-fv 6145 df-ov 6927 df-pconn 31810 |
This theorem is referenced by: pconncn 31813 pconntop 31814 cnpconn 31819 txpconn 31821 ptpconn 31822 indispconn 31823 connpconn 31824 cvxpconn 31831 |
Copyright terms: Public domain | W3C validator |