Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispconn Structured version   Visualization version   GIF version

Theorem ispconn 31812
 Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
ispconn.1 𝑋 = 𝐽
Assertion
Ref Expression
ispconn (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem ispconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4681 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ispconn.1 . . . 4 𝑋 = 𝐽
31, 2syl6eqr 2832 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 oveq2 6932 . . . . 5 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
54rexeqdv 3341 . . . 4 (𝑗 = 𝐽 → (∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
63, 5raleqbidv 3326 . . 3 (𝑗 = 𝐽 → (∀𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
73, 6raleqbidv 3326 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
8 df-pconn 31810 . 2 PConn = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}
97, 8elrab2 3576 1 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107  ∀wral 3090  ∃wrex 3091  ∪ cuni 4673  ‘cfv 6137  (class class class)co 6924  0cc0 10274  1c1 10275  Topctop 21116   Cn ccn 21447  IIcii 23097  PConncpconn 31808 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-iota 6101  df-fv 6145  df-ov 6927  df-pconn 31810 This theorem is referenced by:  pconncn  31813  pconntop  31814  cnpconn  31819  txpconn  31821  ptpconn  31822  indispconn  31823  connpconn  31824  cvxpconn  31831
 Copyright terms: Public domain W3C validator