Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispconn Structured version   Visualization version   GIF version

Theorem ispconn 35191
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
ispconn.1 𝑋 = 𝐽
Assertion
Ref Expression
ispconn (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem ispconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4942 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ispconn.1 . . . 4 𝑋 = 𝐽
31, 2eqtr4di 2798 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 oveq2 7456 . . . . 5 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
54rexeqdv 3335 . . . 4 (𝑗 = 𝐽 → (∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
63, 5raleqbidv 3354 . . 3 (𝑗 = 𝐽 → (∀𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
73, 6raleqbidv 3354 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
8 df-pconn 35189 . 2 PConn = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}
97, 8elrab2 3711 1 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076   cuni 4931  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  Topctop 22920   Cn ccn 23253  IIcii 24920  PConncpconn 35187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-pconn 35189
This theorem is referenced by:  pconncn  35192  pconntop  35193  cnpconn  35198  txpconn  35200  ptpconn  35201  indispconn  35202  connpconn  35203  cvxpconn  35210
  Copyright terms: Public domain W3C validator