Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispconn Structured version   Visualization version   GIF version

Theorem ispconn 32367
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
ispconn.1 𝑋 = 𝐽
Assertion
Ref Expression
ispconn (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem ispconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4838 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ispconn.1 . . . 4 𝑋 = 𝐽
31, 2syl6eqr 2871 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 oveq2 7153 . . . . 5 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
54rexeqdv 3414 . . . 4 (𝑗 = 𝐽 → (∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
63, 5raleqbidv 3399 . . 3 (𝑗 = 𝐽 → (∀𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
73, 6raleqbidv 3399 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
8 df-pconn 32365 . 2 PConn = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}
97, 8elrab2 3680 1 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136   cuni 4830  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526  Topctop 21429   Cn ccn 21760  IIcii 23410  PConncpconn 32363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356  df-ov 7148  df-pconn 32365
This theorem is referenced by:  pconncn  32368  pconntop  32369  cnpconn  32374  txpconn  32376  ptpconn  32377  indispconn  32378  connpconn  32379  cvxpconn  32386
  Copyright terms: Public domain W3C validator