Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispconn Structured version   Visualization version   GIF version

Theorem ispconn 35203
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
ispconn.1 𝑋 = 𝐽
Assertion
Ref Expression
ispconn (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem ispconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4898 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ispconn.1 . . . 4 𝑋 = 𝐽
31, 2eqtr4di 2787 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 oveq2 7421 . . . . 5 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
54rexeqdv 3310 . . . 4 (𝑗 = 𝐽 → (∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
63, 5raleqbidv 3329 . . 3 (𝑗 = 𝐽 → (∀𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
73, 6raleqbidv 3329 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
8 df-pconn 35201 . 2 PConn = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}
97, 8elrab2 3678 1 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059   cuni 4887  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138  Topctop 22848   Cn ccn 23179  IIcii 24838  PConncpconn 35199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416  df-pconn 35201
This theorem is referenced by:  pconncn  35204  pconntop  35205  cnpconn  35210  txpconn  35212  ptpconn  35213  indispconn  35214  connpconn  35215  cvxpconn  35222
  Copyright terms: Public domain W3C validator