Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispconn Structured version   Visualization version   GIF version

Theorem ispconn 35228
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
ispconn.1 𝑋 = 𝐽
Assertion
Ref Expression
ispconn (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem ispconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4918 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ispconn.1 . . . 4 𝑋 = 𝐽
31, 2eqtr4di 2795 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 oveq2 7439 . . . . 5 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
54rexeqdv 3327 . . . 4 (𝑗 = 𝐽 → (∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
63, 5raleqbidv 3346 . . 3 (𝑗 = 𝐽 → (∀𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
73, 6raleqbidv 3346 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
8 df-pconn 35226 . 2 PConn = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}
97, 8elrab2 3695 1 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070   cuni 4907  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  Topctop 22899   Cn ccn 23232  IIcii 24901  PConncpconn 35224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-pconn 35226
This theorem is referenced by:  pconncn  35229  pconntop  35230  cnpconn  35235  txpconn  35237  ptpconn  35238  indispconn  35239  connpconn  35240  cvxpconn  35247
  Copyright terms: Public domain W3C validator