Home | Metamath
Proof Explorer Theorem List (p. 343 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | idsset 34201 | I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ I = ( SSet ∩ ◡ SSet ) | ||
Theorem | eltrans 34202 | Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) | ||
Theorem | dfon3 34203 | A quantifier-free definition of On. (Contributed by Scott Fenton, 5-Apr-2012.) |
⊢ On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) | ||
Theorem | dfon4 34204 | Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.) |
⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) | ||
Theorem | brtxpsd 34205* | Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) | ||
Theorem | brtxpsd2 34206* | Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) & ⊢ 𝐴𝐶𝐵 ⇒ ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) | ||
Theorem | brtxpsd3 34207* | A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) & ⊢ 𝐴𝐶𝐵 & ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) | ||
Theorem | relbigcup 34208 | The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Rel Bigcup | ||
Theorem | brbigcup 34209 | Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) | ||
Theorem | dfbigcup2 34210 | Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) | ||
Theorem | fobigcup 34211 | Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Bigcup :V–onto→V | ||
Theorem | fnbigcup 34212 | Bigcup is a function over the universal class. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Bigcup Fn V | ||
Theorem | fvbigcup 34213 | For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 | ||
Theorem | elfix 34214 | Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) | ||
Theorem | elfix2 34215 | Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) | ||
Theorem | dffix2 34216 | The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 = ran (𝐴 ∩ I ) | ||
Theorem | fixssdm 34217 | The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 ⊆ dom 𝐴 | ||
Theorem | fixssrn 34218 | The fixpoints of a class are a subset of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 ⊆ ran 𝐴 | ||
Theorem | fixcnv 34219 | The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 = Fix ◡𝐴 | ||
Theorem | fixun 34220 | The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) | ||
Theorem | ellimits 34221 | Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) | ||
Theorem | limitssson 34222 | The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Limits ⊆ On | ||
Theorem | dfom5b 34223 | A quantifier-free definition of ω that does not depend on ax-inf 9405. (Note: label was changed from dfom5 9417 to dfom5b 34223 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ ω = (On ∩ ∩ Limits ) | ||
Theorem | sscoid 34224 | A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018.) |
⊢ (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴 ∧ 𝐴 ⊆ 𝐵)) | ||
Theorem | dffun10 34225 | Another potential definition of functionality. Based on statements in http://people.math.gatech.edu/~belinfan/research/autoreas/otter/sum/fs/. (Contributed by Scott Fenton, 30-Aug-2017.) |
⊢ (Fun 𝐹 ↔ 𝐹 ⊆ ( I ∘ (V ∖ ((V ∖ I ) ∘ 𝐹)))) | ||
Theorem | elfuns 34226 | Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ Funs ↔ Fun 𝐹) | ||
Theorem | elfunsg 34227 | Closed form of elfuns 34226. (Contributed by Scott Fenton, 2-May-2014.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Funs ↔ Fun 𝐹)) | ||
Theorem | brsingle 34228 | The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) | ||
Theorem | elsingles 34229* | Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) | ||
Theorem | fnsingle 34230 | The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Singleton Fn V | ||
Theorem | fvsingle 34231 | The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
⊢ (Singleton‘𝐴) = {𝐴} | ||
Theorem | dfsingles2 34232* | Alternate definition of the class of all singletons. (Contributed by Scott Fenton, 20-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Singletons = {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} | ||
Theorem | snelsingles 34233 | A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ∈ Singletons | ||
Theorem | dfiota3 34234 | A definition of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ (℩𝑥𝜑) = ∪ ∪ ({{𝑥 ∣ 𝜑}} ∩ Singletons ) | ||
Theorem | dffv5 34235 | Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) | ||
Theorem | unisnif 34236 | Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) | ||
Theorem | brimage 34237 | Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) | ||
Theorem | brimageg 34238 | Closed form of brimage 34237. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) | ||
Theorem | funimage 34239 | Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Fun Image𝐴 | ||
Theorem | fnimage 34240* | Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} | ||
Theorem | imageval 34241* | The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Image𝑅 = (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) | ||
Theorem | fvimage 34242 | Value of the image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 “ 𝐴) ∈ 𝑊) → (Image𝑅‘𝐴) = (𝑅 “ 𝐴)) | ||
Theorem | brcart 34243 | Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) | ||
Theorem | brdomain 34244 | Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) | ||
Theorem | brrange 34245 | Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) | ||
Theorem | brdomaing 34246 | Closed form of brdomain 34244. (Contributed by Scott Fenton, 2-May-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) | ||
Theorem | brrangeg 34247 | Closed form of brrange 34245. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) | ||
Theorem | brimg 34248 | Binary relation form of the Img function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Img𝐶 ↔ 𝐶 = (𝐴 “ 𝐵)) | ||
Theorem | brapply 34249 | Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Apply𝐶 ↔ 𝐶 = (𝐴‘𝐵)) | ||
Theorem | brcup 34250 | Binary relation form of the Cup function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cup𝐶 ↔ 𝐶 = (𝐴 ∪ 𝐵)) | ||
Theorem | brcap 34251 | Binary relation form of the Cap function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cap𝐶 ↔ 𝐶 = (𝐴 ∩ 𝐵)) | ||
Theorem | brsuccf 34252 | Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Succ𝐵 ↔ 𝐵 = suc 𝐴) | ||
Theorem | funpartlem 34253* | Lemma for funpartfun 34254. Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017.) |
⊢ (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥}) | ||
Theorem | funpartfun 34254 | The functional part of 𝐹 is a function. (Contributed by Scott Fenton, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ Fun Funpart𝐹 | ||
Theorem | funpartss 34255 | The functional part of 𝐹 is a subset of 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Funpart𝐹 ⊆ 𝐹 | ||
Theorem | funpartfv 34256 | The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (Funpart𝐹‘𝐴) = (𝐹‘𝐴) | ||
Theorem | fullfunfnv 34257 | The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ FullFun𝐹 Fn V | ||
Theorem | fullfunfv 34258 | The function value of the full function of 𝐹 agrees with 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | ||
Theorem | brfullfun 34259 | A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) | ||
Theorem | brrestrict 34260 | Binary relation form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Restrict𝐶 ↔ 𝐶 = (𝐴 ↾ 𝐵)) | ||
Theorem | dfrecs2 34261 | A quantifier-free definition of recs. (Contributed by Scott Fenton, 17-Jul-2020.) |
⊢ recs(𝐹) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (FullFun𝐹 ∘ Restrict)))) | ||
Theorem | dfrdg4 34262 | A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ rec(𝐹, 𝐴) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (((V × {∅}) × {∪ {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) | ||
Theorem | dfint3 34263 | Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.) |
⊢ ∩ 𝐴 = (V ∖ (◡(V ∖ E ) “ 𝐴)) | ||
Theorem | imagesset 34264 | The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.) |
⊢ Image◡ SSet ⊆ SSet | ||
Theorem | brub 34265* | Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) | ||
Theorem | brlb 34266* | Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) | ||
Syntax | caltop 34267 | Declare the syntax for an alternate ordered pair. |
class ⟪𝐴, 𝐵⟫ | ||
Syntax | caltxp 34268 | Declare the syntax for an alternate Cartesian product. |
class (𝐴 ×× 𝐵) | ||
Definition | df-altop 34269 | An alternative definition of ordered pairs. This definition removes a hypothesis from its defining theorem (see altopth 34280), making it more convenient in some circumstances. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | ||
Definition | df-altxp 34270* | Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012.) |
⊢ (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫} | ||
Theorem | altopex 34271 | Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ⟪𝐴, 𝐵⟫ ∈ V | ||
Theorem | altopthsn 34272 | Two alternate ordered pairs are equal iff the singletons of their respective elements are equal. Note that this holds regardless of sethood of any of the elements. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) | ||
Theorem | altopeq12 34273 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫) | ||
Theorem | altopeq1 34274 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) | ||
Theorem | altopeq2 34275 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫) | ||
Theorem | altopth1 34276 | Equality of the first members of equal alternate ordered pairs, which holds regardless of the second members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐴 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐴 = 𝐶)) | ||
Theorem | altopth2 34277 | Equality of the second members of equal alternate ordered pairs, which holds regardless of the first members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐵 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐵 = 𝐷)) | ||
Theorem | altopthg 34278 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | altopthbg 34279 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | altopth 34280 | The alternate ordered pair theorem. If two alternate ordered pairs are equal, their first elements are equal and their second elements are equal. Note that 𝐶 and 𝐷 are not required to be a set due to a peculiarity of our specific ordered pair definition, as opposed to the regular ordered pairs used here, which (as in opth 5392), requires 𝐷 to be a set. (Contributed by Scott Fenton, 23-Mar-2012.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | altopthb 34281 | Alternate ordered pair theorem with different sethood requirements. See altopth 34280 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | altopthc 34282 | Alternate ordered pair theorem with different sethood requirements. See altopth 34280 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | altopthd 34283 | Alternate ordered pair theorem with different sethood requirements. See altopth 34280 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | altxpeq1 34284 | Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) | ||
Theorem | altxpeq2 34285 | Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
⊢ (𝐴 = 𝐵 → (𝐶 ×× 𝐴) = (𝐶 ×× 𝐵)) | ||
Theorem | elaltxp 34286* | Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012.) |
⊢ (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑋 = ⟪𝑥, 𝑦⟫) | ||
Theorem | altopelaltxp 34287 | Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5626, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | ||
Theorem | altxpsspw 34288 | An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
⊢ (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) | ||
Theorem | altxpexg 34289 | The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) | ||
Theorem | rankaltopb 34290 | Compute the rank of an alternate ordered pair. (Contributed by Scott Fenton, 18-Dec-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵))) | ||
Theorem | nfaltop 34291 | Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥⟪𝐴, 𝐵⟫ | ||
Theorem | sbcaltop 34292* | Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) | ||
Syntax | cofs 34293 | Declare the syntax for the outer five segment configuration. |
class OuterFiveSeg | ||
Definition | df-ofs 34294* | The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (ax5seg 27315). See brofs 34316 and 5segofs 34317 for how it is used. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) |
⊢ OuterFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑏〉Cgr〈𝑥, 𝑦〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} | ||
Theorem | cgrrflx2d 34295 | Deduction form of axcgrrflx 27291. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉) | ||
Theorem | cgrtr4d 34296 | Deduction form of axcgrtr 27292. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) | ||
Theorem | cgrtr4and 34297 | Deduction form of axcgrtr 27292. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) | ||
Theorem | cgrrflx 34298 | Reflexivity law for congruence. Theorem 2.1 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | ||
Theorem | cgrrflxd 34299 | Deduction form of cgrrflx 34298. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | ||
Theorem | cgrcomim 34300 | Congruence commutes on the two sides. Implication version. Theorem 2.2 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |