![]() |
Metamath
Proof Explorer Theorem List (p. 343 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | measinb 34201* | Building a measure restricted to the intersection with a given set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘𝑆)) | ||
Theorem | measres 34202 | Building a measure restricted to a smaller sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran sigAlgebra ∧ 𝑇 ⊆ 𝑆) → (𝑀 ↾ 𝑇) ∈ (measures‘𝑇)) | ||
Theorem | measinb2 34203* | Building a measure restricted to the intersection with a given set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ (𝑆 ∩ 𝒫 𝐴) ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘(𝑆 ∩ 𝒫 𝐴))) | ||
Theorem | measdivcst 34204 | Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016.) (Revised by Thierry Arnoux, 30-Jan-2017.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀 ∘f/c /𝑒 𝐴) ∈ (measures‘𝑆)) | ||
Theorem | measdivcstALTV 34205* | Alternate version of measdivcst 34204. (Contributed by Thierry Arnoux, 25-Dec-2016.) (New usage is discouraged.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)) | ||
Theorem | cntmeas 34206 | The Counting measure is a measure on any sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ (𝑆 ∈ ∪ ran sigAlgebra → (♯ ↾ 𝑆) ∈ (measures‘𝑆)) | ||
Theorem | pwcntmeas 34207 | The counting measure is a measure on any power set. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
⊢ (𝑂 ∈ 𝑉 → (♯ ↾ 𝒫 𝑂) ∈ (measures‘𝒫 𝑂)) | ||
Theorem | cntnevol 34208 | Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.) |
⊢ (♯ ↾ 𝒫 𝑂) ≠ vol | ||
Theorem | voliune 34209 | The Lebesgue measure function is countably additive. This formulation on the extended reals, allows for +∞ for the measure of any set in the sum. Cf. ovoliun 25553 and voliun 25602. (Contributed by Thierry Arnoux, 16-Oct-2017.) |
⊢ ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘∪ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴)) | ||
Theorem | volfiniune 34210* | The Lebesgue measure function is countably additive. This theorem is to volfiniun 25595 what voliune 34209 is to voliun 25602. (Contributed by Thierry Arnoux, 16-Oct-2017.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵) → (vol‘∪ 𝑛 ∈ 𝐴 𝐵) = Σ*𝑛 ∈ 𝐴(vol‘𝐵)) | ||
Theorem | volmeas 34211 | The Lebesgue measure is a measure. (Contributed by Thierry Arnoux, 16-Oct-2017.) |
⊢ vol ∈ (measures‘dom vol) | ||
Syntax | cdde 34212 | Extend class notation to include the Dirac delta measure. |
class δ | ||
Definition | df-dde 34213 | Define the Dirac delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0)) | ||
Theorem | ddeval1 34214 | Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1) | ||
Theorem | ddeval0 34215 | Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
⊢ ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0) | ||
Theorem | ddemeas 34216 | The Dirac delta measure is a measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
⊢ δ ∈ (measures‘𝒫 ℝ) | ||
Syntax | cae 34217 | Extend class notation to include the 'almost everywhere' relation. |
class a.e. | ||
Syntax | cfae 34218 | Extend class notation to include the 'almost everywhere' builder. |
class ~ a.e. | ||
Definition | df-ae 34219* | Define 'almost everywhere' with regard to a measure 𝑀. A property holds almost everywhere if the measure of the set where it does not hold has measure zero. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | ||
Theorem | relae 34220 | 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ Rel a.e. | ||
Theorem | brae 34221 | 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) | ||
Theorem | braew 34222* | 'almost everywhere' relation for a measure 𝑀 and a property 𝜑 (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ ∪ dom 𝑀 = 𝑂 ⇒ ⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0)) | ||
Theorem | truae 34223* | A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ ∪ dom 𝑀 = 𝑂 & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) | ||
Theorem | aean 34224* | A conjunction holds almost everywhere if and only if both its terms do. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ ∪ dom 𝑀 = 𝑂 ⇒ ⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥 ∈ 𝑂 ∣ (𝜑 ∧ 𝜓)}a.e.𝑀 ↔ ({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ∧ {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀))) | ||
Definition | df-fae 34225* | Define a builder for an 'almost everywhere' relation between functions, from relations between function values. In this definition, the range of 𝑓 and 𝑔 is enforced in order to ensure the resulting relation is a set. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ ~ a.e. = (𝑟 ∈ V, 𝑚 ∈ ∪ ran measures ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom 𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚)}) | ||
Theorem | faeval 34226* | Value of the 'almost everywhere' relation for a given relation and measure. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (𝑅~ a.e.𝑀) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}) | ||
Theorem | relfae 34227 | The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → Rel (𝑅~ a.e.𝑀)) | ||
Theorem | brfae 34228* | 'almost everywhere' relation for two functions 𝐹 and 𝐺 with regard to the measure 𝑀. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ dom 𝑅 = 𝐷 & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 ↑m ∪ dom 𝑀)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 ↑m ∪ dom 𝑀)) ⇒ ⊢ (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝐹‘𝑥)𝑅(𝐺‘𝑥)}a.e.𝑀)) | ||
Syntax | cmbfm 34229 | Extend class notation with the measurable functions builder. |
class MblFnM | ||
Definition | df-mbfm 34230* |
Define the measurable function builder, which generates the set of
measurable functions from a measurable space to another one. Here, the
measurable spaces are given using their sigma-algebras 𝑠 and
𝑡,
and the spaces themselves are recovered by ∪ 𝑠 and ∪ 𝑡.
Note the similarities between the definition of measurable functions in measure theory, and of continuous functions in topology. This is the definition for the generic measure theory. For the specific case of functions from ℝ to ℂ, see df-mbf 25667. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | ||
Theorem | ismbfm 34231* | The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 25676. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) | ||
Theorem | elunirnmbfm 34232* | The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) | ||
Theorem | mbfmfun 34233 | A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
Theorem | mbfmf 34234 | A measurable function as a function with domain and codomain. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) ⇒ ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) | ||
Theorem | isanmbfmOLD 34235 | Obsolete version of isanmbfm 34237 as of 13-Jan-2025. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) | ||
Theorem | mbfmcnvima 34236 | The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) | ||
Theorem | isanmbfm 34237 | The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.) Remove hypotheses. (Revised by SN, 13-Jan-2025.) |
⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) | ||
Theorem | mbfmbfmOLD 34238 | A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) | ||
Theorem | mbfmbfm 34239 | A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) Remove hypotheses. (Revised by SN, 13-Jan-2025.) |
⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) | ||
Theorem | mbfmcst 34240* | A constant function is measurable. Cf. mbfconst 25681. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ∪ 𝑆 ↦ 𝐴)) & ⊢ (𝜑 → 𝐴 ∈ ∪ 𝑇) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | ||
Theorem | 1stmbfm 34241 | The first projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) ⇒ ⊢ (𝜑 → (1st ↾ (∪ 𝑆 × ∪ 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑆)) | ||
Theorem | 2ndmbfm 34242 | The second projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) ⇒ ⊢ (𝜑 → (2nd ↾ (∪ 𝑆 × ∪ 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇)) | ||
Theorem | imambfm 34243* | If the sigma-algebra in the range of a given function is generated by a collection of basic sets 𝐾, then to check the measurability of that function, we need only consider inverse images of basic sets 𝑎. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ (𝜑 → 𝐾 ∈ V) & ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹:∪ 𝑆⟶∪ 𝑇 ∧ ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆))) | ||
Theorem | cnmbfm 34244 | A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) & ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | ||
Theorem | mbfmco 34245 | The composition of two measurable functions is measurable. See cnmpt11 23686. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) | ||
Theorem | mbfmco2 34246* | The pair building of two measurable functions is measurable. ( cf. cnmpt1t 23688). (Contributed by Thierry Arnoux, 6-Jun-2017.) |
⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (𝑅MblFnM𝑇)) & ⊢ 𝐻 = (𝑥 ∈ ∪ 𝑅 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇))) | ||
Theorem | mbfmvolf 34247 | Measurable functions with respect to the Lebesgue measure are real-valued functions on the real numbers. (Contributed by Thierry Arnoux, 27-Mar-2017.) |
⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹:ℝ⟶ℝ) | ||
Theorem | elmbfmvol2 34248 | Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) | ||
Theorem | mbfmcnt 34249 | All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂MblFnM𝔅ℝ) = (ℝ ↑m 𝑂)) | ||
Theorem | br2base 34250* | The base set for the generator of the Borel sigma-algebra on (ℝ × ℝ) is indeed (ℝ × ℝ). (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ ∪ ran (𝑥 ∈ 𝔅ℝ, 𝑦 ∈ 𝔅ℝ ↦ (𝑥 × 𝑦)) = (ℝ × ℝ) | ||
Theorem | dya2ub 34251 | An upper bound for a dyadic number. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅) | ||
Theorem | sxbrsigalem0 34252* | The closed half-spaces of (ℝ × ℝ) cover (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.) |
⊢ ∪ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ) | ||
Theorem | sxbrsigalem3 34253* | The sigma-algebra generated by the closed half-spaces of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed sets of (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) | ||
Theorem | dya2iocival 34254* | The function 𝐼 returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 25648. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) | ||
Theorem | dya2iocress 34255* | Dyadic intervals are subsets of ℝ. (Contributed by Thierry Arnoux, 18-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ⊆ ℝ) | ||
Theorem | dya2iocbrsiga 34256* | Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) | ||
Theorem | dya2icobrsiga 34257* | Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 13-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ran 𝐼 ⊆ 𝔅ℝ | ||
Theorem | dya2icoseg 34258* | For any point and any closed-below, open-above interval of ℝ centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑁 = (⌊‘(1 − (2 logb 𝐷))) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷)))) | ||
Theorem | dya2icoseg2 34259* | For any point and any open interval of ℝ containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋 ∈ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐸)) | ||
Theorem | dya2iocrfn 34260* | The function returning dyadic square covering for a given size has domain (ran 𝐼 × ran 𝐼). (Contributed by Thierry Arnoux, 19-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) | ||
Theorem | dya2iocct 34261* | The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ ran 𝑅 ≼ ω | ||
Theorem | dya2iocnrect 34262* | For any point of an open rectangle in (ℝ × ℝ), there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) & ⊢ 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ⇒ ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) | ||
Theorem | dya2iocnei 34263* | For any point of an open set of the usual topology on (ℝ × ℝ) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) | ||
Theorem | dya2iocuni 34264* | Every open set of (ℝ × ℝ) is a union of closed-below open-above dyadic rational rectangular subsets of (ℝ × ℝ). This union must be a countable union by dya2iocct 34261. (Contributed by Thierry Arnoux, 18-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅∪ 𝑐 = 𝐴) | ||
Theorem | dya2iocucvr 34265* | The dyadic rectangular set collection covers (ℝ × ℝ). (Contributed by Thierry Arnoux, 18-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ ∪ ran 𝑅 = (ℝ × ℝ) | ||
Theorem | sxbrsigalem1 34266* | The Borel algebra on (ℝ × ℝ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). This is a step of the proof of Proposition 1.1.5 of [Cohn] p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) | ||
Theorem | sxbrsigalem2 34267* | The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed half-spaces of (ℝ × ℝ). The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) | ||
Theorem | sxbrsigalem4 34268* | The Borel algebra on (ℝ × ℝ) is generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). Proposition 1.1.5 of [Cohn] p. 4 . Note that the interval used in this formalization are closed-below, open-above instead of open-below, closed-above in the proof as they are ultimately generated by the floor function. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅) | ||
Theorem | sxbrsigalem5 34269* | First direction for sxbrsiga 34271. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) | ||
Theorem | sxbrsigalem6 34270 | First direction for sxbrsiga 34271, same as sxbrsigalem6, dealing with the antecedents. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) | ||
Theorem | sxbrsiga 34271 | The product sigma-algebra (𝔅ℝ ×s 𝔅ℝ) is the Borel algebra on (ℝ × ℝ) See example 5.1.1 of [Cohn] p. 143 . (Contributed by Thierry Arnoux, 10-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘(𝐽 ×t 𝐽)) | ||
In this section, we define a function toOMeas which constructs an outer measure, from a pre-measure 𝑅. An explicit generic definition of an outer measure is not given. It consists of the three following statements: - the outer measure of an empty set is zero (oms0 34278) - it is monotone (omsmon 34279) - it is countably sub-additive (omssubadd 34281) See Definition 1.11.1 of [Bogachev] p. 41. | ||
Syntax | coms 34272 | Class declaration for the outer measure construction function. |
class toOMeas | ||
Definition | df-oms 34273* | Define a function constructing an outer measure. See omsval 34274 for its value. Definition 1.5 of [Bogachev] p. 16. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑟‘𝑦)), (0[,]+∞), < ))) | ||
Theorem | omsval 34274* | Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) | ||
Theorem | omsfval 34275* | Value of the outer measure evaluated for a given set 𝐴. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ⊆ ∪ 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) | ||
Theorem | omscl 34276* | A closure lemma for the constructed outer measure. (Contributed by Thierry Arnoux, 17-Sep-2019.) |
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) | ||
Theorem | omsf 34277 | A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) | ||
Theorem | oms0 34278 | A constructed outer measure evaluates to zero for the empty set. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ (𝜑 → ∅ ∈ dom 𝑅) & ⊢ (𝜑 → (𝑅‘∅) = 0) ⇒ ⊢ (𝜑 → (𝑀‘∅) = 0) | ||
Theorem | omsmon 34279 | A constructed outer measure is monotone. Note in Example 1.5.2 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝑄) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) | ||
Theorem | omssubaddlem 34280* | For any small margin 𝐸, we can find a covering approaching the outer measure of a set 𝐴 by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑄) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) < ((𝑀‘𝐴) + 𝐸)) | ||
Theorem | omssubadd 34281* | A constructed outer measure is countably sub-additive. Lemma 1.5.4 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 21-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 𝐴 ⊆ ∪ 𝑄) & ⊢ (𝜑 → 𝑋 ≼ ω) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑦 ∈ 𝑋 𝐴) ≤ Σ*𝑦 ∈ 𝑋(𝑀‘𝐴)) | ||
Syntax | ccarsg 34282 | Class declaration for the Caratheodory sigma-Algebra construction. |
class toCaraSiga | ||
Definition | df-carsg 34283* | Define a function constructing Caratheodory measurable sets for a given outer measure. See carsgval 34284 for its value. Definition 1.11.2 of [Bogachev] p. 41. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒)}) | ||
Theorem | carsgval 34284* | Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)}) | ||
Theorem | carsgcl 34285 | Closure of the Caratheodory measurable sets. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂) | ||
Theorem | elcarsg 34286* | Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) | ||
Theorem | baselcarsg 34287 | The universe set, 𝑂, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) ⇒ ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) | ||
Theorem | 0elcarsg 34288 | The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) ⇒ ⊢ (𝜑 → ∅ ∈ (toCaraSiga‘𝑀)) | ||
Theorem | carsguni 34289 | The union of all Caratheodory measurable sets is the universe. (Contributed by Thierry Arnoux, 22-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) ⇒ ⊢ (𝜑 → ∪ (toCaraSiga‘𝑀) = 𝑂) | ||
Theorem | elcarsgss 34290 | Caratheodory measurable sets are subsets of the universe. (Contributed by Thierry Arnoux, 21-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | ||
Theorem | difelcarsg 34291 | The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → (𝑂 ∖ 𝐴) ∈ (toCaraSiga‘𝑀)) | ||
Theorem | inelcarsg 34292* | The Caratheodory measurable sets are closed under intersection. (Contributed by Thierry Arnoux, 18-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) & ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ (toCaraSiga‘𝑀)) | ||
Theorem | unelcarsg 34293* | The Caratheodory-measurable sets are closed under pairwise unions. (Contributed by Thierry Arnoux, 21-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) & ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ (toCaraSiga‘𝑀)) | ||
Theorem | difelcarsg2 34294* | The Caratheodory-measurable sets are closed under class difference. (Contributed by Thierry Arnoux, 30-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) & ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) | ||
Theorem | carsgmon 34295* | Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑂) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) | ||
Theorem | carsgsigalem 34296* | Lemma for the following theorems. (Contributed by Thierry Arnoux, 23-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) | ||
Theorem | fiunelcarsg 34297* | The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) | ||
Theorem | carsgclctunlem1 34298* | Lemma for carsgclctun 34302. (Contributed by Thierry Arnoux, 23-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝐴 𝑦) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑂) ⇒ ⊢ (𝜑 → (𝑀‘(𝐸 ∩ ∪ 𝐴)) = Σ*𝑦 ∈ 𝐴(𝑀‘(𝐸 ∩ 𝑦))) | ||
Theorem | carsggect 34299* | The outer measure is countably superadditive on Caratheodory measurable sets. (Contributed by Thierry Arnoux, 31-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ (𝜑 → ¬ ∅ ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝐴 𝑦) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) ⇒ ⊢ (𝜑 → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ (𝑀‘∪ 𝐴)) | ||
Theorem | carsgclctunlem2 34300* | Lemma for carsgclctun 34302. (Contributed by Thierry Arnoux, 25-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) & ⊢ (𝜑 → Disj 𝑘 ∈ ℕ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀)) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑂) & ⊢ (𝜑 → (𝑀‘𝐸) ≠ +∞) ⇒ ⊢ (𝜑 → ((𝑀‘(𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀‘𝐸)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |