Home | Metamath
Proof Explorer Theorem List (p. 343 of 458) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28805) |
Hilbert Space Explorer
(28806-30328) |
Users' Mathboxes
(30329-45797) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | onsucconni 34201 | A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.) |
⊢ 𝐴 ∈ On ⇒ ⊢ suc 𝐴 ∈ Conn | ||
Theorem | onsucconn 34202 | A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.) |
⊢ (𝐴 ∈ On → suc 𝐴 ∈ Conn) | ||
Theorem | ordtopconn 34203 | An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015.) |
⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn)) | ||
Theorem | onintopssconn 34204 | An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.) |
⊢ (On ∩ Top) ⊆ Conn | ||
Theorem | onsuct0 34205 | A successor ordinal number is a T0 space. (Contributed by Chen-Pang He, 8-Nov-2015.) |
⊢ (𝐴 ∈ On → suc 𝐴 ∈ Kol2) | ||
Theorem | ordtopt0 34206 | An ordinal topology is T0. (Contributed by Chen-Pang He, 8-Nov-2015.) |
⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2)) | ||
Theorem | onsucsuccmpi 34207 | The successor of a successor ordinal number is a compact topology, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 18-Oct-2015.) |
⊢ 𝐴 ∈ On ⇒ ⊢ suc suc 𝐴 ∈ Comp | ||
Theorem | onsucsuccmp 34208 | The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015.) |
⊢ (𝐴 ∈ On → suc suc 𝐴 ∈ Comp) | ||
Theorem | limsucncmpi 34209 | The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.) |
⊢ Lim 𝐴 ⇒ ⊢ ¬ suc 𝐴 ∈ Comp | ||
Theorem | limsucncmp 34210 | The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.) |
⊢ (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp) | ||
Theorem | ordcmp 34211 | An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is 1o. (Contributed by Chen-Pang He, 1-Nov-2015.) |
⊢ (Ord 𝐴 → (𝐴 ∈ Comp ↔ (∪ 𝐴 = ∪ ∪ 𝐴 → 𝐴 = 1o))) | ||
Theorem | ssoninhaus 34212 | The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.) |
⊢ {1o, 2o} ⊆ (On ∩ Haus) | ||
Theorem | onint1 34213 | The ordinal T1 spaces are 1o and 2o, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 9-Nov-2015.) |
⊢ (On ∩ Fre) = {1o, 2o} | ||
Theorem | oninhaus 34214 | The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.) |
⊢ (On ∩ Haus) = {1o, 2o} | ||
Theorem | fveleq 34215 | Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.) |
⊢ (𝐴 = 𝐵 → ((𝜑 → (𝐹‘𝐴) ∈ 𝑃) ↔ (𝜑 → (𝐹‘𝐵) ∈ 𝑃))) | ||
Theorem | findfvcl 34216* | Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.) |
⊢ (𝜑 → (𝐹‘∅) ∈ 𝑃) & ⊢ (𝑦 ∈ ω → (𝜑 → ((𝐹‘𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃))) ⇒ ⊢ (𝐴 ∈ ω → (𝜑 → (𝐹‘𝐴) ∈ 𝑃)) | ||
Theorem | findreccl 34217* | Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.) |
⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) ⇒ ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) | ||
Theorem | findabrcl 34218* | Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008.) (Revised by Mario Carneiro, 11-Sep-2015.) |
⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) ⇒ ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃) | ||
Theorem | nnssi2 34219 | Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
⊢ ℕ ⊆ 𝐷 & ⊢ (𝐵 ∈ ℕ → 𝜑) & ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝜑) → 𝜓) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝜓) | ||
Theorem | nnssi3 34220 | Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
⊢ ℕ ⊆ 𝐷 & ⊢ (𝐶 ∈ ℕ → 𝜑) & ⊢ (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ∧ 𝜑) → 𝜓) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝜓) | ||
Theorem | nndivsub 34221 | Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝐶) ∈ ℕ)) | ||
Theorem | nndivlub 34222 | A factor of a positive integer cannot exceed it. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵 ≤ 𝐴)) | ||
Syntax | cgcdOLD 34223 | Extend class notation to include the gdc function. (New usage is discouraged.) |
class gcdOLD (𝐴, 𝐵) | ||
Definition | df-gcdOLD 34224* | gcdOLD (𝐴, 𝐵) is the largest positive integer that evenly divides both 𝐴 and 𝐵. (Contributed by Jeff Hoffman, 17-Jun-2008.) (New usage is discouraged.) |
⊢ gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < ) | ||
Theorem | ee7.2aOLD 34225 | Lemma for Euclid's Elements, Book 7, proposition 2. The original mentions the smaller measure being 'continually subtracted' from the larger. Many authors interpret this phrase as 𝐴 mod 𝐵. Here, just one subtraction step is proved to preserve the gcdOLD. The rec function will be used in other proofs for iterated subtraction. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵 − 𝐴)))) | ||
Theorem | dnival 34226* | Value of the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) ⇒ ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) | ||
Theorem | dnicld1 34227 | Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) | ||
Theorem | dnicld2 34228* | Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑇‘𝐴) ∈ ℝ) | ||
Theorem | dnif 34229 | The "distance to nearest integer" function is a function. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) ⇒ ⊢ 𝑇:ℝ⟶ℝ | ||
Theorem | dnizeq0 34230* | The distance to nearest integer is zero for integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑇‘𝐴) = 0) | ||
Theorem | dnizphlfeqhlf 34231* | The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) | ||
Theorem | rddif2 34232 | Variant of rddif 14753. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) | ||
Theorem | dnibndlem1 34233* | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆)) | ||
Theorem | dnibndlem2 34234* | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2)))) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | dnibndlem3 34235 | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1)) ⇒ ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))) | ||
Theorem | dnibndlem4 34236 | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝐵 ∈ ℝ → 0 ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))) | ||
Theorem | dnibndlem5 34237 | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) | ||
Theorem | dnibndlem6 34238 | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) | ||
Theorem | dnibndlem7 34239 | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))) | ||
Theorem | dnibndlem8 34240 | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) | ||
Theorem | dnibndlem9 34241* | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1)) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | dnibndlem10 34242 | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) ⇒ ⊢ (𝜑 → 1 ≤ (𝐵 − 𝐴)) | ||
Theorem | dnibndlem11 34243 | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2)) | ||
Theorem | dnibndlem12 34244* | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | dnibndlem13 34245* | Lemma for dnibnd 34246. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | dnibnd 34246* | The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | dnicn 34247 | The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) ⇒ ⊢ 𝑇 ∈ (ℝ–cn→ℝ) | ||
Theorem | knoppcnlem1 34248* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) | ||
Theorem | knoppcnlem2 34249* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ) | ||
Theorem | knoppcnlem3 34250* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) ∈ ℝ) | ||
Theorem | knoppcnlem4 34251* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (abs‘((𝐹‘𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀)) | ||
Theorem | knoppcnlem5 34252* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ)) | ||
Theorem | knoppcnlem6 34253* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ)) | ||
Theorem | knoppcnlem7 34254* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) | ||
Theorem | knoppcnlem8 34255* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ)) | ||
Theorem | knoppcnlem9 34256* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊) | ||
Theorem | knoppcnlem10 34257* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) | ||
Theorem | knoppcnlem11 34258* | Lemma for knoppcn 34259. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ)) | ||
Theorem | knoppcn 34259* | The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℂ)) | ||
Theorem | knoppcld 34260* | Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → (𝑊‘𝐴) ∈ ℂ) | ||
Theorem | unblimceq0lem 34261* | Lemma for unblimceq0 34262. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → ∀𝑐 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑦 ∈ 𝑆 (𝑦 ≠ 𝐴 ∧ (abs‘(𝑦 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑦)))) | ||
Theorem | unblimceq0 34262* | If 𝐹 is unbounded near 𝐴 it has no limit at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐴) = ∅) | ||
Theorem | unbdqndv1 34263* | If the difference quotient (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) | ||
Theorem | unbdqndv2lem1 34264 | Lemma for unbdqndv2 34266. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ≠ 0) & ⊢ (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴 − 𝐵) / 𝐷))) ⇒ ⊢ (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴 − 𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵 − 𝐶)))) | ||
Theorem | unbdqndv2lem2 34265* | Lemma for unbdqndv2 34266. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) & ⊢ 𝑊 = if((𝐵 · (𝑉 − 𝑈)) ≤ (abs‘((𝐹‘𝑈) − (𝐹‘𝐴))), 𝑈, 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝑉) & ⊢ (𝜑 → (𝑉 − 𝑈) < 𝐷) & ⊢ (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹‘𝑉) − (𝐹‘𝑈))) / (𝑉 − 𝑈))) ⇒ ⊢ (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊 − 𝐴)) < 𝐷 ∧ 𝐵 ≤ (abs‘(𝐺‘𝑊))))) | ||
Theorem | unbdqndv2 34266* | Variant of unbdqndv1 34263 with the hypothesis that (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) is unbounded where 𝑥 ≤ 𝐴 and 𝐴 ≤ 𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹)) | ||
Theorem | knoppndvlem1 34267 | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) | ||
Theorem | knoppndvlem2 34268 | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 < 𝐼) ⇒ ⊢ (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ) | ||
Theorem | knoppndvlem3 34269 | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) ⇒ ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) | ||
Theorem | knoppndvlem4 34270* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) | ||
Theorem | knoppndvlem5 34271* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) ∈ ℝ) | ||
Theorem | knoppndvlem6 34272* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑊‘𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖)) | ||
Theorem | knoppndvlem7 34273* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2)))) | ||
Theorem | knoppndvlem8 34274* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = 0) | ||
Theorem | knoppndvlem9 34275* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) / 2)) | ||
Theorem | knoppndvlem10 34276* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (abs‘(((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2)) | ||
Theorem | knoppndvlem11 34277* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 28-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐴)‘𝑖))) ≤ ((abs‘(𝐵 − 𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖))) | ||
Theorem | knoppndvlem12 34278 | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) | ||
Theorem | knoppndvlem13 34279 | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → 𝐶 ≠ 0) | ||
Theorem | knoppndvlem14 34280* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 7-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) | ||
Theorem | knoppndvlem15 34281* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 6-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊‘𝐵) − (𝑊‘𝐴)))) | ||
Theorem | knoppndvlem16 34282 | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 19-Jul-2021.) |
⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) = (((2 · 𝑁)↑-𝐽) / 2)) | ||
Theorem | knoppndvlem17 34283* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 12-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊‘𝐵) − (𝑊‘𝐴))) / (𝐵 − 𝐴))) | ||
Theorem | knoppndvlem18 34284* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 14-Aug-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))) | ||
Theorem | knoppndvlem19 34285* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 17-Aug-2021.) |
⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℤ (𝐴 ≤ 𝐻 ∧ 𝐻 ≤ 𝐵)) | ||
Theorem | knoppndvlem20 34286 | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) | ||
Theorem | knoppndvlem21 34287* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) & ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷) & ⊢ (𝜑 → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) | ||
Theorem | knoppndvlem22 34288* | Lemma for knoppndv 34289. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) | ||
Theorem | knoppndv 34289* | The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → dom (ℝ D 𝑊) = ∅) | ||
Theorem | knoppf 34290* | Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝑊:ℝ⟶ℝ) | ||
Theorem | knoppcn2 34291* | Variant of knoppcn 34259 with different codomain. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) ⇒ ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℝ)) | ||
Theorem | cnndvlem1 34292* | Lemma for cnndv 34294. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) ⇒ ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) | ||
Theorem | cnndvlem2 34293* | Lemma for cnndv 34294. (Contributed by Asger C. Ipsen, 26-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) ⇒ ⊢ ∃𝑓(𝑓 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑓) = ∅) | ||
Theorem | cnndv 34294 | There exists a continuous nowhere differentiable function. The result follows directly from knoppcn 34259 and knoppndv 34289. (Contributed by Asger C. Ipsen, 26-Aug-2021.) |
⊢ ∃𝑓(𝑓 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑓) = ∅) | ||
In this mathbox, we try to respect the ordering of the sections of the main part. There are strengthenings of theorems of the main part, as well as work on reducing axiom dependencies. | ||
Miscellaneous utility theorems of propositional calculus. | ||
In this section, we prove a few rules of inference derived from modus ponens ax-mp 5, and which do not depend on any other axioms. | ||
Theorem | bj-mp2c 34295 | A double modus ponens inference. Inference associated with mpd 15. (Contributed by BJ, 24-Sep-2019.) |
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ 𝜒 | ||
Theorem | bj-mp2d 34296 | A double modus ponens inference. Inference associated with mpcom 38. (Contributed by BJ, 24-Sep-2019.) |
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → (𝜑 → 𝜒)) ⇒ ⊢ 𝜒 | ||
In this section, we prove a syntactic theorem (bj-0 34297) asserting that some formula is well-formed. Then, we use this syntactic theorem to shorten the proof of a "usual" theorem (bj-1 34298) and explain in the comment of that theorem why this phenomenon is unusual. | ||
Theorem | bj-0 34297 | A syntactic theorem. See the section comment and the comment of bj-1 34298. The full proof (that is, with the syntactic, non-essential steps) does not appear on this webpage. It has five steps and reads $= wph wps wi wch wi $. The only other syntactic theorems in the main part of set.mm are wel 2112 and weq 1964. (Contributed by BJ, 24-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
wff ((𝜑 → 𝜓) → 𝜒) | ||
Theorem | bj-1 34298 |
In this proof, the use of the syntactic theorem bj-0 34297
allows to reduce
the total length by one (non-essential) step. See also the section
comment and the comment of bj-0 34297. Since bj-0 34297
is used in a
non-essential step, this use does not appear on this webpage (but the
present theorem appears on the webpage for bj-0 34297
as a theorem referencing
it). The full proof reads $= wph wps wch bj-0 id $. (while, without
using bj-0 34297, it would read $= wph wps wi wch wi id $.).
Now we explain why syntactic theorems are not useful in set.mm. Suppose that the syntactic theorem thm-0 proves that PHI is a well-formed formula, and that thm-0 is used to shorten the proof of thm-1. Assume that PHI does have proper non-atomic subformulas (which is not the case of the formula proved by weq 1964 or wel 2112). Then, the proof of thm-1 does not construct all the proper non-atomic subformulas of PHI (if it did, then using thm-0 would not shorten it). Therefore, thm-1 is a special instance of a more general theorem with essentially the same proof. In the present case, bj-1 34298 is a special instance of id 22. (Contributed by BJ, 24-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜓) → 𝜒)) | ||
Theorem | bj-a1k 34299 | Weakening of ax-1 6. As a consequence, its associated inference is an instance (where we allow extra hypotheses) of ax-1 6. Its commuted form is 2a1 28 (but bj-a1k 34299 does not require ax-2 7). This shortens the proofs of dfwe2 7500 (937>925), ordunisuc2 7563 (789>777), r111 9242 (558>545), smo11 8016 (1176>1164). (Contributed by BJ, 11-Aug-2020.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜓))) | ||
Theorem | bj-poni 34300 | Inference associated with "pon", pm2.27 42. Its associated inference is ax-mp 5. (Contributed by BJ, 30-Jul-2024.) |
⊢ 𝜑 ⇒ ⊢ ((𝜑 → 𝜓) → 𝜓) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |