Detailed syntax breakdown of Definition df-sconn
| Step | Hyp | Ref
| Expression |
| 1 | | csconn 35171 |
. 2
class
SConn |
| 2 | | cc0 11122 |
. . . . . . 7
class
0 |
| 3 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 4 | 3 | cv 1538 |
. . . . . . 7
class 𝑓 |
| 5 | 2, 4 | cfv 6528 |
. . . . . 6
class (𝑓‘0) |
| 6 | | c1 11123 |
. . . . . . 7
class
1 |
| 7 | 6, 4 | cfv 6528 |
. . . . . 6
class (𝑓‘1) |
| 8 | 5, 7 | wceq 1539 |
. . . . 5
wff (𝑓‘0) = (𝑓‘1) |
| 9 | | cicc 13357 |
. . . . . . . 8
class
[,] |
| 10 | 2, 6, 9 | co 7400 |
. . . . . . 7
class
(0[,]1) |
| 11 | 5 | csn 4599 |
. . . . . . 7
class {(𝑓‘0)} |
| 12 | 10, 11 | cxp 5650 |
. . . . . 6
class ((0[,]1)
× {(𝑓‘0)}) |
| 13 | | vj |
. . . . . . . 8
setvar 𝑗 |
| 14 | 13 | cv 1538 |
. . . . . . 7
class 𝑗 |
| 15 | | cphtpc 24906 |
. . . . . . 7
class
≃ph |
| 16 | 14, 15 | cfv 6528 |
. . . . . 6
class (
≃ph‘𝑗) |
| 17 | 4, 12, 16 | wbr 5117 |
. . . . 5
wff 𝑓(
≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}) |
| 18 | 8, 17 | wi 4 |
. . . 4
wff ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)})) |
| 19 | | cii 24806 |
. . . . 5
class
II |
| 20 | | ccn 23149 |
. . . . 5
class
Cn |
| 21 | 19, 14, 20 | co 7400 |
. . . 4
class (II Cn
𝑗) |
| 22 | 18, 3, 21 | wral 3050 |
. . 3
wff
∀𝑓 ∈ (II
Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)})) |
| 23 | | cpconn 35170 |
. . 3
class
PConn |
| 24 | 22, 13, 23 | crab 3413 |
. 2
class {𝑗 ∈ PConn ∣
∀𝑓 ∈ (II Cn
𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}))} |
| 25 | 1, 24 | wceq 1539 |
1
wff SConn =
{𝑗 ∈ PConn ∣
∀𝑓 ∈ (II Cn
𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}))} |