Home | Metamath
Proof Explorer Theorem List (p. 424 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | e111 42301 | A virtual deduction elimination rule (see syl3c 66). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | e1111 42302 | A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂)))) ⇒ ⊢ ( 𝜑 ▶ 𝜂 ) | ||
Theorem | e110 42303 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | ee110 42304 | e110 42303 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | e101 42305 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | ee101 42306 | e101 42305 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜑 → 𝜃) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | e011 42307 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜓 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜓 ▶ 𝜏 ) | ||
Theorem | ee011 42308 | e011 42307 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜓 → 𝜏) | ||
Theorem | e100 42309 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | ee100 42310 | e100 42309 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | e010 42311 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜓 ▶ 𝜏 ) | ||
Theorem | ee010 42312 | e010 42311 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜓 → 𝜏) | ||
Theorem | e001 42313 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ( 𝜒 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜒 ▶ 𝜏 ) | ||
Theorem | ee001 42314 | e001 42313 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | e11 42315 | A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
Theorem | e11an 42316 | Conjunction form of e11 42315. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
Theorem | ee11an 42317 | e11an 42316 without virtual deductions. syl22anc 836 is also e11an 42316 without virtual deductions, exept with a different order of hypotheses. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | e01 42318 | A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ (𝜑 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) | ||
Theorem | e01an 42319 | Conjunction form of e01 42318. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) | ||
Theorem | ee01an 42320 | e01an 42319 without virtual deductions. sylancr 587 is also a form of e01an 42319 without virtual deduction, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
Theorem | e10 42321 | A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
Theorem | e10an 42322 | Conjunction form of e10 42321. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
Theorem | ee10an 42323 | e10an 42322 without virtual deductions. sylancl 586 is also e10an 42322 without virtual deductions, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | e02 42324 | A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) | ||
Theorem | e02an 42325 | Conjunction form of e02 42324. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) | ||
Theorem | ee02an 42326 | e02an 42325 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → (𝜒 → 𝜏)) | ||
Theorem | eel021old 42327 | el021old 42328 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒) → 𝜏) | ||
Theorem | el021old 42328 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( ( 𝜓 , 𝜒 ) ▶ 𝜃 ) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( ( 𝜓 , 𝜒 ) ▶ 𝜏 ) | ||
Theorem | eel132 42329 | syl2an 596 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) & ⊢ ((𝜓 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜂) | ||
Theorem | eel000cT 42330 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (⊤ → 𝜃) | ||
Theorem | eel0TT 42331 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (⊤ → 𝜓) & ⊢ (⊤ → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | eelT00 42332 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | eelTTT 42333 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (⊤ → 𝜓) & ⊢ (⊤ → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | eelT11 42334 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → 𝜏) | ||
Theorem | eelT1 42335 | Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Alan Sare, 23-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
Theorem | eelT12 42336 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜃 → 𝜏) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | ||
Theorem | eelTT1 42337 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (⊤ → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | eelT01 42338 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | eel0T1 42339 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (⊤ → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | eel12131 42340 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) & ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | ||
Theorem | eel2131 42341 | syl2an 596 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜂) | ||
Theorem | eel3132 42342 | syl2an 596 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜃 ∧ 𝜓) → 𝜏) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜓) → 𝜂) | ||
Theorem | eel0321old 42343 | el0321old 42344 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜂) | ||
Theorem | el0321old 42344 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( ( 𝜓 , 𝜒 , 𝜃 ) ▶ 𝜏 ) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( ( 𝜓 , 𝜒 , 𝜃 ) ▶ 𝜂 ) | ||
Theorem | eel2122old 42345 | el2122old 42346 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ (𝜓 → 𝜏) & ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜂) | ||
Theorem | el2122old 42346 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜒 ) & ⊢ ( 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜓 ▶ 𝜏 ) & ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜂 ) | ||
Theorem | eel0000 42347 | Elimination rule similar to mp4an 690, except with a left-nested conjunction unification theorem. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ 𝜏 | ||
Theorem | eel00001 42348 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜏 → 𝜂) & ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜏 → 𝜁) | ||
Theorem | eel00000 42349 | Elimination rule similar eel0000 42347, except with five hpothesis steps. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ 𝜂 | ||
Theorem | eel11111 42350 | Five-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl113anc 1381 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | e12 42351 | A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) | ||
Theorem | e12an 42352 | Conjunction form of e12 42351 (see syl6an 681). (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) | ||
Theorem | el12 42353 | Virtual deduction form of syl2an 596. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜏 ▶ 𝜒 ) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( ( 𝜑 , 𝜏 ) ▶ 𝜃 ) | ||
Theorem | e20 42354 | A virtual deduction elimination rule (see syl6mpi 67). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | e20an 42355 | Conjunction form of e20 42354. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | ee20an 42356 | e20an 42355 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) | ||
Theorem | e21 42357 | A virtual deduction elimination rule (see syl6ci 71). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | e21an 42358 | Conjunction form of e21 42357. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | ee21an 42359 | e21an 42358 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) | ||
Theorem | e333 42360 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) | ||
Theorem | e33 42361 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | e33an 42362 | Conjunction form of e33 42361. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee33an 42363 | e33an 42362 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e3 42364 | Meta-connective form of syl8 76. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜃 → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | ||
Theorem | e3bi 42365 | Biconditional form of e3 42364. syl8ib 255 is e3bi 42365 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜃 ↔ 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | ||
Theorem | e3bir 42366 | Right biconditional form of e3 42364. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜏 ↔ 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | ||
Theorem | e03 42367 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee03 42368 | e03 42367 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) & ⊢ (𝜑 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜂))) | ||
Theorem | e03an 42369 | Conjunction form of e03 42367. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee03an 42370 | Conjunction form of ee03 42368. (Contributed by Alan Sare, 18-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜂))) | ||
Theorem | e30 42371 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee30 42372 | e30 42371 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ 𝜏 & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e30an 42373 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee30an 42374 | Conjunction form of ee30 42372. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ 𝜏 & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e13 42375 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
Theorem | e13an 42376 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ ((𝜓 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee13an 42377 | e13an 42376 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) & ⊢ ((𝜓 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜂))) | ||
Theorem | e31 42378 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee31 42379 | e31 42378 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e31an 42380 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee31an 42381 | e31an 42380 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e23 42382 | A virtual deduction elimination rule (see syl10 79). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) | ||
Theorem | e23an 42383 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee23an 42384 | e23an 42383 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) | ||
Theorem | e32 42385 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee32 42386 | e32 42385 without virtual deductions. (Contributed by Alan Sare, 18-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e32an 42387 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee32an 42388 | e33an 42362 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e123 42389 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜂 ) & ⊢ (𝜓 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜁 ) | ||
Theorem | ee123 42390 | e123 42389 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) & ⊢ (𝜓 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜁))) | ||
Theorem | el123 42391 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜏 ▶ 𝜂 ) & ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) ⇒ ⊢ ( ( 𝜑 , 𝜒 , 𝜏 ) ▶ 𝜁 ) | ||
Theorem | e233 42392 | A virtual deduction elimination rule. (Contributed by Alan Sare, 29-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) & ⊢ (𝜒 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜁 ) | ||
Theorem | e323 42393 | A virtual deduction elimination rule. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) | ||
Theorem | e000 42394 | A virtual deduction elimination rule. The non-virtual deduction form of e000 42394 is the virtual deduction form. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ 𝜃 | ||
Theorem | e00 42395 | Elimination rule identical to mp2 9. The non-virtual deduction form is the virtual deduction form, which is mp2 9. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ 𝜒 | ||
Theorem | e00an 42396 | Elimination rule identical to mp2an 689. The non-virtual deduction form is the virtual deduction form, which is mp2an 689. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
Theorem | eel00cT 42397 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (⊤ → 𝜒) | ||
Theorem | eelTT 42398 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (⊤ → 𝜓) & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
Theorem | e0a 42399 | Elimination rule identical to ax-mp 5. The non-virtual deduction form is the virtual deduction form, which is ax-mp 5. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 | ||
Theorem | eelT 42400 | An elimination deduction. (Contributed by Alan Sare, 5-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |