Home | Metamath
Proof Explorer Theorem List (p. 424 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29568) |
Hilbert Space Explorer
(29569-31091) |
Users' Mathboxes
(31092-46925) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dvgrat 42301* | Ratio test for divergence of a complex infinite series. See e.g. remark "if (abs‘((𝑎‘(𝑛 + 1)) / (𝑎‘𝑛))) ≥ 1 for all large n..." in https://en.wikipedia.org/wiki/Ratio_test#The_test. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ ) | ||
Theorem | cvgdvgrat 42302* |
Ratio test for convergence and divergence of a complex infinite series.
If the ratio 𝑅 of the absolute values of successive
terms in an
infinite sequence 𝐹 converges to less than one, then the
infinite
sum of the terms of 𝐹 converges to a complex number; and
if 𝑅
converges greater then the sum diverges. This combined form of
cvgrat 15695 and dvgrat 42301 directly uses the limit of the ratio.
(It also demonstrates how to use climi2 15320 and absltd 15241 to transform a limit to an inequality cf. https://math.stackexchange.com/q/2215191 15241, and how to use r19.29a 3156 in a similar fashion to Mario Carneiro's proof sketch with rexlimdva 3149 at https://groups.google.com/g/metamath/c/2RPikOiXLMo 3149.) (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ≠ 0) & ⊢ 𝑅 = (𝑘 ∈ 𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑅 ⇝ 𝐿) & ⊢ (𝜑 → 𝐿 ≠ 1) ⇒ ⊢ (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ )) | ||
Theorem | radcnvrat 42303* | Let 𝐿 be the limit, if one exists, of the ratio (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))) (as in the ratio test cvgdvgrat 42302) as 𝑘 increases. Then the radius of convergence of power series Σ𝑛 ∈ ℕ0((𝐴‘𝑛) · (𝑥↑𝑛)) is (1 / 𝐿) if 𝐿 is nonzero. Proof "The limit involved in the ratio test..." in https://en.wikipedia.org/wiki/Radius_of_convergence 42302 —a few lines that evidently hide quite an involved process to confirm. (Contributed by Steve Rodriguez, 8-Mar-2020.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴‘𝑘) ≠ 0) & ⊢ (𝜑 → 𝐷 ⇝ 𝐿) & ⊢ (𝜑 → 𝐿 ≠ 0) ⇒ ⊢ (𝜑 → 𝑅 = (1 / 𝐿)) | ||
Theorem | reldvds 42304 | The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ Rel ∥ | ||
Theorem | nznngen 42305 | All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) | ||
Theorem | nzss 42306 | The set of multiples of m, mℤ, is a subset of those of n, nℤ, iff n divides m. Lemma 2.1(a) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑀)) | ||
Theorem | nzin 42307 | The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) | ||
Theorem | nzprmdif 42308 | Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℙ) & ⊢ (𝜑 → 𝑀 ≠ 𝑁) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) | ||
Theorem | hashnzfz 42309 | Special case of hashdvds 16574: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) ⇒ ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) | ||
Theorem | hashnzfz2 42310 | Special case of hashnzfz 42309: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) | ||
Theorem | hashnzfzclim 42311* | As the upper bound 𝐾 of the constraint interval (𝐽...𝐾) in hashnzfz 42309 increases, the resulting count of multiples tends to (𝐾 / 𝑀) —that is, there are approximately (𝐾 / 𝑀) multiples of 𝑀 in a finite interval of integers. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀)) | ||
Theorem | caofcan 42312* | Transfer a cancellation law like mulcan 11718 to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑇) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧)) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f 𝑅𝐻) ↔ 𝐺 = 𝐻)) | ||
Theorem | ofsubid 42313 | Function analogue of subid 11346. (Contributed by Steve Rodriguez, 5-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∘f − 𝐹) = (𝐴 × {0})) | ||
Theorem | ofmul12 42314 | Function analogue of mul12 11246. (Contributed by Steve Rodriguez, 13-Nov-2015.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹 ∘f · (𝐺 ∘f · 𝐻)) = (𝐺 ∘f · (𝐹 ∘f · 𝐻))) | ||
Theorem | ofdivrec 42315 | Function analogue of divrec 11755, a division analogue of ofnegsub 12077. (Contributed by Steve Rodriguez, 3-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹 ∘f · ((𝐴 × {1}) ∘f / 𝐺)) = (𝐹 ∘f / 𝐺)) | ||
Theorem | ofdivcan4 42316 | Function analogue of divcan4 11766. (Contributed by Steve Rodriguez, 4-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐹 ∘f · 𝐺) ∘f / 𝐺) = 𝐹) | ||
Theorem | ofdivdiv2 42317 | Function analogue of divdiv2 11793. (Contributed by Steve Rodriguez, 23-Nov-2015.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹 ∘f / (𝐺 ∘f / 𝐻)) = ((𝐹 ∘f · 𝐻) ∘f / 𝐺)) | ||
Theorem | lhe4.4ex1a 42318 | Example of the Fundamental Theorem of Calculus, part two (ftc2 25314): ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3). Section 4.4 example 1a of [LarsonHostetlerEdwards] p. 311. (The book teaches ftc2 25314 as simply the "Fundamental Theorem of Calculus", then ftc1 25312 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015.) (Revised by Steve Rodriguez, 31-Oct-2015.) |
⊢ ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3) | ||
Theorem | dvsconst 42319 | Derivative of a constant function on the real or complex numbers. The function may return a complex 𝐴 even if 𝑆 is ℝ. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) | ||
Theorem | dvsid 42320 | Derivative of the identity function on the real or complex numbers. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ( I ↾ 𝑆)) = (𝑆 × {1})) | ||
Theorem | dvsef 42321 | Derivative of the exponential function on the real or complex numbers. (Contributed by Steve Rodriguez, 12-Nov-2015.) |
⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (exp ↾ 𝑆)) = (exp ↾ 𝑆)) | ||
Theorem | expgrowthi 42322* | Exponential growth and decay model. See expgrowth 42324 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐾 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝑌 = (𝑡 ∈ 𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡)))) ⇒ ⊢ (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) | ||
Theorem | dvconstbi 42323* | The derivative of a function on 𝑆 is zero iff it is a constant function. Roughly a biconditional 𝑆 analogue of dvconst 25187 and dveq0 25270. Corresponds to integration formula "∫0 d𝑥 = 𝐶 " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑌:𝑆⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝑌) = 𝑆) ⇒ ⊢ (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐}))) | ||
Theorem | expgrowth 42324* |
Exponential growth and decay model. The derivative of a function y of
variable t equals a constant k times y itself, iff
y equals some
constant C times the exponential of kt. This theorem and
expgrowthi 42322 illustrate one of the simplest and most
crucial classes of
differential equations, equations that relate functions to their
derivatives.
Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model 42322); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ. Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘f · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and ∘f · is multiplication as a function operation. The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf 42322 pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case 42322. Statements for this and expgrowthi 42322 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐾 ∈ ℂ) & ⊢ (𝜑 → 𝑌:𝑆⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝑌) = 𝑆) ⇒ ⊢ (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡 ∈ 𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))) | ||
Syntax | cbcc 42325 | Extend class notation to include the generalized binomial coefficient operation. |
class C𝑐 | ||
Definition | df-bcc 42326* | Define a generalized binomial coefficient operation, which unlike df-bc 14123 allows complex numbers for the first argument. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) | ||
Theorem | bccval 42327 | Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) | ||
Theorem | bcccl 42328 | Closure of the generalized binomial coefficient. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐𝐾) ∈ ℂ) | ||
Theorem | bcc0 42329 | The generalized binomial coefficient 𝐶 choose 𝐾 is zero iff 𝐶 is an integer between zero and (𝐾 − 1) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1)))) | ||
Theorem | bccp1k 42330 | Generalized binomial coefficient: 𝐶 choose (𝐾 + 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶C𝑐𝐾) · ((𝐶 − 𝐾) / (𝐾 + 1)))) | ||
Theorem | bccm1k 42331 | Generalized binomial coefficient: 𝐶 choose (𝐾 − 1), when 𝐶 is not (𝐾 − 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ (ℂ ∖ {(𝐾 − 1)})) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾))) | ||
Theorem | bccn0 42332 | Generalized binomial coefficient: 𝐶 choose 0. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶C𝑐0) = 1) | ||
Theorem | bccn1 42333 | Generalized binomial coefficient: 𝐶 choose 1. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶C𝑐1) = 𝐶) | ||
Theorem | bccbc 42334 | The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾)) | ||
Theorem | uzmptshftfval 42335* | When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐵) & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = (𝑦 − 𝑁) → 𝐵 = 𝐶) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ 𝐶)) | ||
Theorem | dvradcnv2 42336* | The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is (at least) as large as the radius of convergence of 𝐺. This version of dvradcnv 25686 uses a shifted version of 𝐻 to match the sum form of (ℂ D 𝐹) in pserdv2 25695 (and shows how to use uzmptshftfval 42335 to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴‘𝑛)) · (𝑋↑(𝑛 − 1)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ ) | ||
Theorem | binomcxplemwb 42337 | Lemma for binomcxp 42346. The lemma in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (((𝐶 − 𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (𝐶 · (𝐶C𝑐𝐾))) | ||
Theorem | binomcxplemnn0 42338* | Lemma for binomcxp 42346. When 𝐶 is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom 15642 equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set (0...𝐶), and when the index set is widened beyond 𝐶 the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) | ||
Theorem | binomcxplemrat 42339* | Lemma for binomcxp 42346. As 𝑘 increases, this ratio's absolute value converges to one. Part of equation "Since continuity of the absolute value..." in the Wikibooks proof (proven for the inverse ratio, which we later show is no problem). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶 − 𝑘) / (𝑘 + 1)))) ⇝ 1) | ||
Theorem | binomcxplemfrat 42340* | Lemma for binomcxp 42346. binomcxplemrat 42339 implies that when 𝐶 is not a nonnegative integer, the absolute value of the ratio ((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) ⇝ 1) | ||
Theorem | binomcxplemradcnv 42341* | Lemma for binomcxp 42346. By binomcxplemfrat 42340 and radcnvrat 42303 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹‘𝑘) · (𝑏↑𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) | ||
Theorem | binomcxplemdvbinom 42342* | Lemma for binomcxp 42346. By the power and chain rules, calculate the derivative of ((1 + 𝑏)↑𝑐-𝐶), with respect to 𝑏 in the disk of convergence 𝐷. We later multiply the derivative in the later binomcxplemdvsum 42344 by this derivative to show that ((1 + 𝑏)↑𝑐𝐶) (with a nonnegated 𝐶) and the later sum, since both at 𝑏 = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏 ∈ 𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏 ∈ 𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))) | ||
Theorem | binomcxplemcvg 42343* | Lemma for binomcxp 42346. The sum in binomcxplemnn0 42338 and its derivative (see the next theorem, binomcxplemdvsum 42344) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) | ||
Theorem | binomcxplemdvsum 42344* | Lemma for binomcxp 42346. The derivative of the generalized sum in binomcxplemnn0 42338. Part of remark "This convergence allows to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑃 = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) ⇒ ⊢ (𝜑 → (ℂ D 𝑃) = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘))) | ||
Theorem | binomcxplemnotnn0 42345* |
Lemma for binomcxp 42346. When 𝐶 is not a nonnegative integer, the
generalized sum in binomcxplemnn0 42338 —which we will call 𝑃
—is a convergent power series: its base 𝑏 is always of
smaller absolute value than the radius of convergence.
pserdv2 25695 gives the derivative of 𝑃, which by dvradcnv 25686 also converges in that radius. When 𝐴 is fixed at one, (𝐴 + 𝑏) times that derivative equals (𝐶 · 𝑃) and fraction (𝑃 / ((𝐴 + 𝑏)↑𝑐𝐶)) is always defined with derivative zero, so the fraction is a constant—specifically one, because ((1 + 0)↑𝑐𝐶) = 1. Thus ((1 + 𝑏)↑𝑐𝐶) = (𝑃‘𝑏). Finally, let 𝑏 be (𝐵 / 𝐴), and multiply both the binomial ((1 + (𝐵 / 𝐴))↑𝑐𝐶) and the sum (𝑃‘(𝐵 / 𝐴)) by (𝐴↑𝑐𝐶) to get the result. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑃 = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) | ||
Theorem | binomcxp 42346* | Generalize the binomial theorem binom 15642 to positive real summand 𝐴, real summand 𝐵, and complex exponent 𝐶. Proof in https://en.wikibooks.org/wiki/Advanced_Calculus 15642; see also https://en.wikipedia.org/wiki/Binomial_series 15642, https://en.wikipedia.org/wiki/Binomial_theorem 15642 (sections "Newton's generalized binomial theorem" and "Future generalizations"), and proof "General Binomial Theorem" in https://proofwiki.org/wiki/Binomial_Theorem 15642. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) | ||
Theorem | pm10.12 42347* | Theorem *10.12 in [WhiteheadRussell] p. 146. In *10, this is treated as an axiom, and the proofs in *10 are based on this theorem. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ (∀𝑥(𝜑 ∨ 𝜓) → (𝜑 ∨ ∀𝑥𝜓)) | ||
Theorem | pm10.14 42348 | Theorem *10.14 in [WhiteheadRussell] p. 146. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | ||
Theorem | pm10.251 42349 | Theorem *10.251 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ (∀𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | ||
Theorem | pm10.252 42350 | Theorem *10.252 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.) (New usage is discouraged.) |
⊢ (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑) | ||
Theorem | pm10.253 42351 | Theorem *10.253 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ (¬ ∀𝑥𝜑 ↔ ∃𝑥 ¬ 𝜑) | ||
Theorem | albitr 42352 | Theorem *10.301 in [WhiteheadRussell] p. 151. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥(𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜓 ↔ 𝜒)) → ∀𝑥(𝜑 ↔ 𝜒)) | ||
Theorem | pm10.42 42353 | Theorem *10.42 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ ∃𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | pm10.52 42354* | Theorem *10.52 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ 𝜓)) | ||
Theorem | pm10.53 42355 | Theorem *10.53 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | pm10.541 42356* | Theorem *10.541 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥(𝜑 → (𝜒 ∨ 𝜓)) ↔ (𝜒 ∨ ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | pm10.542 42357* | Theorem *10.542 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) ↔ (𝜒 → ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | pm10.55 42358 | Theorem *10.55 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∃𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥(𝜑 → 𝜓)) ↔ (∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | pm10.56 42359 | Theorem *10.56 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥(𝜑 ∧ 𝜒)) → ∃𝑥(𝜓 ∧ 𝜒)) | ||
Theorem | pm10.57 42360 | Theorem *10.57 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥(𝜑 → (𝜓 ∨ 𝜒)) → (∀𝑥(𝜑 → 𝜓) ∨ ∃𝑥(𝜑 ∧ 𝜒))) | ||
Theorem | 2alanimi 42361 | Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦𝜒) | ||
Theorem | 2al2imi 42362 | Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜒)) | ||
Theorem | pm11.11 42363 | Theorem *11.11 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ 𝜑 ⇒ ⊢ ∀𝑧∀𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 | ||
Theorem | pm11.12 42364* | Theorem *11.12 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) → (𝜑 ∨ ∀𝑥∀𝑦𝜓)) | ||
Theorem | 19.21vv 42365* | Compare Theorem *11.3 in [WhiteheadRussell] p. 161. Special case of theorem 19.21 of [Margaris] p. 90 with two quantifiers. See 19.21v 1942. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜓 → 𝜑) ↔ (𝜓 → ∀𝑥∀𝑦𝜑)) | ||
Theorem | 2alim 42366 | Theorem *11.32 in [WhiteheadRussell] p. 162. Theorem 19.20 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓)) | ||
Theorem | 2albi 42367 | Theorem *11.33 in [WhiteheadRussell] p. 162. Theorem 19.15 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓)) | ||
Theorem | 2exim 42368 | Theorem *11.34 in [WhiteheadRussell] p. 162. Theorem 19.22 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓)) | ||
Theorem | 2exbi 42369 | Theorem *11.341 in [WhiteheadRussell] p. 162. Theorem 19.18 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓)) | ||
Theorem | spsbce-2 42370 | Theorem *11.36 in [WhiteheadRussell] p. 162. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) | ||
Theorem | 19.33-2 42371 | Theorem *11.421 in [WhiteheadRussell] p. 163. Theorem 19.33 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥∀𝑦𝜑 ∨ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦(𝜑 ∨ 𝜓)) | ||
Theorem | 19.36vv 42372* | Theorem *11.43 in [WhiteheadRussell] p. 163. Theorem 19.36 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 → 𝜓) ↔ (∀𝑥∀𝑦𝜑 → 𝜓)) | ||
Theorem | 19.31vv 42373* | Theorem *11.44 in [WhiteheadRussell] p. 163. Theorem 19.31 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) ↔ (∀𝑥∀𝑦𝜑 ∨ 𝜓)) | ||
Theorem | 19.37vv 42374* | Theorem *11.46 in [WhiteheadRussell] p. 164. Theorem 19.37 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜓 → 𝜑) ↔ (𝜓 → ∃𝑥∃𝑦𝜑)) | ||
Theorem | 19.28vv 42375* | Theorem *11.47 in [WhiteheadRussell] p. 164. Theorem 19.28 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) | ||
Theorem | pm11.52 42376 | Theorem *11.52 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ¬ ∀𝑥∀𝑦(𝜑 → ¬ 𝜓)) | ||
Theorem | aaanv 42377* | Theorem *11.56 in [WhiteheadRussell] p. 165. Special case of aaan 2328. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥𝜑 ∧ ∀𝑦𝜓) ↔ ∀𝑥∀𝑦(𝜑 ∧ 𝜓)) | ||
Theorem | pm11.57 42378* | Theorem *11.57 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | pm11.58 42379* | Theorem *11.58 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | pm11.59 42380* | Theorem *11.59 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) | ||
Theorem | pm11.6 42381* | Theorem *11.6 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦(∃𝑥(𝜑 ∧ 𝜒) ∧ 𝜓)) | ||
Theorem | pm11.61 42382* | Theorem *11.61 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) | ||
Theorem | pm11.62 42383* | Theorem *11.62 in [WhiteheadRussell] p. 166. Importation combined with the rearrangement with quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝜒) ↔ ∀𝑥(𝜑 → ∀𝑦(𝜓 → 𝜒))) | ||
Theorem | pm11.63 42384 | Theorem *11.63 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (¬ ∃𝑥∃𝑦𝜑 → ∀𝑥∀𝑦(𝜑 → 𝜓)) | ||
Theorem | pm11.7 42385 | Theorem *11.7 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜑) ↔ ∃𝑥∃𝑦𝜑) | ||
Theorem | pm11.71 42386* | Theorem *11.71 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜒) → ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑦(𝜒 → 𝜃)) ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃)))) | ||
Theorem | sbeqal1 42387* | If 𝑥 = 𝑦 always implies 𝑥 = 𝑧, then 𝑦 = 𝑧. (Contributed by Andrew Salmon, 2-Jun-2011.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) → 𝑦 = 𝑧) | ||
Theorem | sbeqal1i 42388* | Suppose you know 𝑥 = 𝑦 implies 𝑥 = 𝑧, assuming 𝑥 and 𝑧 are distinct. Then, 𝑦 = 𝑧. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑧) ⇒ ⊢ 𝑦 = 𝑧 | ||
Theorem | sbeqal2i 42389* | If 𝑥 = 𝑦 implies 𝑥 = 𝑧, then we can infer 𝑧 = 𝑦. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑧) ⇒ ⊢ 𝑧 = 𝑦 | ||
Theorem | axc5c4c711 42390 | Proof of a theorem that can act as a sole axiom for pure predicate calculus with ax-gen 1797 as the inference rule. This proof extends the idea of axc5c711 37234 and related theorems. (Contributed by Andrew Salmon, 14-Jul-2011.) |
⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓))) → (∀𝑦𝜑 → ∀𝑦𝜓)) | ||
Theorem | axc5c4c711toc5 42391 | Rederivation of sp 2176 from axc5c4c711 42390. Note that ax6 2383 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) Revised to use ax6v 1972 instead of ax6 2383, so that this rederivation requires only ax6v 1972 and propositional calculus. (Revised by BJ, 14-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | axc5c4c711toc4 42392 | Rederivation of axc4 2315 from axc5c4c711 42390. Note that only propositional calculus is required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
Theorem | axc5c4c711toc7 42393 | Rederivation of axc7 2311 from axc5c4c711 42390. Note that neither axc7 2311 nor ax-11 2154 are required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | ||
Theorem | axc5c4c711to11 42394 | Rederivation of ax-11 2154 from axc5c4c711 42390. Note that ax-11 2154 is not required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Theorem | axc11next 42395* | This theorem shows that, given axextb 2711, we can derive a version of axc11n 2425. However, it is weaker than axc11n 2425 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧 𝑧 = 𝑥) | ||
Theorem | pm13.13a 42396 | One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑) | ||
Theorem | pm13.13b 42397 | Theorem *13.13 in [WhiteheadRussell] p. 178 with different variable substitution. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (([𝐴 / 𝑥]𝜑 ∧ 𝑥 = 𝐴) → 𝜑) | ||
Theorem | pm13.14 42398 | Theorem *13.14 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥 ≠ 𝐴) | ||
Theorem | pm13.192 42399* | Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) | ||
Theorem | pm13.193 42400 | Theorem *13.193 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 ∧ 𝑥 = 𝑦)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |