HomeHome Metamath Proof Explorer
Theorem List (p. 424 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 42301-42400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsumcubes 42301* The sum of the first 𝑁 perfect cubes is the sum of the first 𝑁 nonnegative integers, squared. This is the Proof by Nicomachus from https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes using induction and index shifting to collect all the odd numbers. (Contributed by SN, 22-Mar-2025.)
(𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
 
Theorempine0 42302 π is nonzero. (Contributed by SN, 25-Apr-2025.)
π ≠ 0
 
Theoremine1 42303 i is not 1. (Contributed by SN, 25-Apr-2025.)
i ≠ 1
 
Theorem0tie0 42304 0 times i equals 0. (Contributed by SN, 25-Apr-2025.)
(0 · i) = 0
 
Theoremit1ei 42305 i times 1 equals i. (Contributed by SN, 25-Apr-2025.)
(i · 1) = i
 
Theorem1tiei 42306 1 times i equals i. (Contributed by SN, 25-Apr-2025.)
(1 · i) = i
 
Theoremitrere 42307 i times a real is real iff the real is zero. (Contributed by SN, 25-Apr-2025.)
(𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))
 
Theoremretire 42308 A real times i is real iff the real is zero. (Contributed by SN, 25-Apr-2025.)
(𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0))
 
21.30.3  Exponents and divisibility
 
Theoremoexpreposd 42309 Lemma for dffltz 42589. TODO-SN?: This can be used to show exp11d 42313 holds for all integers when the exponent is odd. The more standard ¬ 2 ∥ 𝑀 should be used. (Contributed by SN, 4-Mar-2023.)
(𝜑𝑁 ∈ ℝ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ (𝑀 / 2) ∈ ℕ)       (𝜑 → (0 < 𝑁 ↔ 0 < (𝑁𝑀)))
 
Theoremexplt1d 42310 A nonnegative real number less than one raised to a positive integer is less than one. (Contributed by SN, 3-Jul-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 < 1)       (𝜑 → (𝐴𝑁) < 1)
 
Theoremexpeq1d 42311 A nonnegative real number is one if and only if it is one when raised to a positive integer. (Contributed by SN, 3-Jul-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → ((𝐴𝑁) = 1 ↔ 𝐴 = 1))
 
Theoremexpeqidd 42312 A nonnegative real number is zero or one if and only if it is itself when raised to an integer greater than one. (Contributed by SN, 3-Jul-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ (ℤ‘2))    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → ((𝐴𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1)))
 
Theoremexp11d 42313 exp11nnd 14310 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑁 ≠ 0)    &   (𝜑 → (𝐴𝑁) = (𝐵𝑁))       (𝜑𝐴 = 𝐵)
 
Theorem0dvds0 42314 0 divides 0. (Contributed by SN, 15-Sep-2024.)
0 ∥ 0
 
Theoremabsdvdsabsb 42315 Divisibility is invariant under taking the absolute value on both sides. (Contributed by SN, 15-Sep-2024.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
 
Theoremgcdnn0id 42316 The gcd of a nonnegative integer and itself is the integer. (Contributed by SN, 25-Aug-2024.)
(𝑁 ∈ ℕ0 → (𝑁 gcd 𝑁) = 𝑁)
 
Theoremgcdle1d 42317 The greatest common divisor of a positive integer and another integer is less than or equal to the positive integer. (Contributed by SN, 25-Aug-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀 gcd 𝑁) ≤ 𝑀)
 
Theoremgcdle2d 42318 The greatest common divisor of a positive integer and another integer is less than or equal to the positive integer. (Contributed by SN, 25-Aug-2024.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝑀 gcd 𝑁) ≤ 𝑁)
 
Theoremdvdsexpad 42319 Deduction associated with dvdsexpim 16602. (Contributed by SN, 21-Aug-2024.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴𝑁) ∥ (𝐵𝑁))
 
Theoremdvdsexpnn 42320 dvdssqlem 16613 generalized to positive integer exponents. (Contributed by SN, 20-Aug-2024.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)))
 
Theoremdvdsexpnn0 42321 dvdsexpnn 42320 generalized to include zero bases. (Contributed by SN, 15-Sep-2024.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)))
 
Theoremdvdsexpb 42322 dvdssq 16614 generalized to positive integer exponents. (Contributed by SN, 15-Sep-2024.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)))
 
Theoremposqsqznn 42323 When a positive rational squared is an integer, the rational is a positive integer. zsqrtelqelz 16805 with all terms squared and positive. (Contributed by SN, 23-Aug-2024.)
(𝜑 → (𝐴↑2) ∈ ℤ)    &   (𝜑𝐴 ∈ ℚ)    &   (𝜑 → 0 < 𝐴)       (𝜑𝐴 ∈ ℕ)
 
Theoremzdivgd 42324* Two ways to express "𝑁 is an integer multiple of 𝑀". Originally a subproof of zdiv 12713. (Contributed by SN, 25-Apr-2025.)
(𝜑𝑀 ∈ ℂ)    &   (𝜑𝑁 ∈ ℂ)    &   (𝜑𝑀 ≠ 0)       (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
 
Theoremefne0d 42325 The exponential of a complex number is nonzero, deduction form. EDITORIAL: Using efne0d 42325 in efne0 16145 is shorter than vice versa. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (exp‘𝐴) ≠ 0)
 
Theoremefsubd 42326 Difference of exponents law for exponential function, deduction form. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (exp‘(𝐴𝐵)) = ((exp‘𝐴) / (exp‘𝐵)))
 
Theoremef11d 42327* General condition for the exponential function to be one-to-one. efper 26539 shows that exponentiation is periodic. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((exp‘𝐴) = (exp‘𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + ((i · (2 · π)) · 𝑛))))
 
Theoremlogccne0d 42328 The logarithm isn't 0 if its argument isn't 0 or 1, deduction form. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐴 ≠ 1)       (𝜑 → (log‘𝐴) ≠ 0)
 
Theoremcxp112d 42329* General condition for complex exponentiation to be one-to-one with respect to the second argument. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐶 ∈ ℂ)    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)    &   (𝜑𝐶 ≠ 1)       (𝜑 → ((𝐶𝑐𝐴) = (𝐶𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘𝐶)))))
 
Theoremcxp111d 42330* General condition for complex exponentiation to be one-to-one with respect to the first argument. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴𝑐𝐶) = (𝐵𝑐𝐶) ↔ ∃𝑛 ∈ ℤ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶))))
 
Theoremcxpi11d 42331* i to the powers of 𝐴 and 𝐵 are equal iff 𝐴 and 𝐵 are a multiple of 4 apart. EDITORIAL: This theorem may be revised to a more convenient form. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛))))
 
Theoremlogne0d 42332 Deduction form of logne0 26639. See logccne0d 42328 for a more general version. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐴 ≠ 1)       (𝜑 → (log‘𝐴) ≠ 0)
 
Theoremrxp112d 42333 Real exponentiation is one-to-one with respect to the second argument. (TODO: Note that the base 𝐶 must be positive since -𝐶𝐴 is 𝐶𝐴 · e↑iπ𝐴, so in the negative case 𝐴 = 𝐵 + 2𝑘). (Contributed by SN, 25-Apr-2025.)
(𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ≠ 1)    &   (𝜑 → (𝐶𝑐𝐴) = (𝐶𝑐𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremlog11d 42334 The natural logarithm is one-to-one. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((log‘𝐴) = (log‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremrplog11d 42335 The natural logarithm is one-to-one on positive reals. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → ((log‘𝐴) = (log‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremrxp11d 42336 Real exponentiation is one-to-one with respect to the first argument. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 ≠ 0)    &   (𝜑 → (𝐴𝑐𝐶) = (𝐵𝑐𝐶))       (𝜑𝐴 = 𝐵)
 
21.30.4  Trigonometry
 
Theoremtanhalfpim 42337 The tangent of π / 2 minus a number is the cotangent, here represented by cos𝐴 / sin𝐴. (Contributed by SN, 2-Sep-2025.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (sin‘𝐴) ≠ 0)       (𝜑 → (tan‘((π / 2) − 𝐴)) = ((cos‘𝐴) / (sin‘𝐴)))
 
Theoremtan3rdpi 42338 The tangent of π / 3 is √3. (Contributed by SN, 2-Sep-2025.)
(tan‘(π / 3)) = (√‘3)
 
Theoremasin1half 42339 The arcsine of 1 / 2 is π / 6. (Contributed by SN, 31-Aug-2025.)
(arcsin‘(1 / 2)) = (π / 6)
 
Theoremacos1half 42340 The arccosine of 1 / 2 is π / 3. (Contributed by SN, 31-Aug-2024.)
(arccos‘(1 / 2)) = (π / 3)
 
21.30.5  Real subtraction
 
Syntaxcresub 42341 Real number subtraction.
class
 
Definitiondf-resub 42342* Define subtraction between real numbers. This operator saves a few axioms over df-sub 11522 in certain situations. Theorem resubval 42343 shows its value, resubadd 42355 relates it to addition, and rersubcl 42354 proves its closure. It is the restriction of df-sub 11522 to the reals: subresre 42406. (Contributed by Steven Nguyen, 7-Jan-2023.)
= (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥))
 
Theoremresubval 42343* Value of real subtraction, which is the (unique) real 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
 
Theoremrenegeulemv 42344* Lemma for renegeu 42346 and similar. Derive existential uniqueness from existence. (Contributed by Steven Nguyen, 28-Jan-2023.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴)       (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
 
Theoremrenegeulem 42345* Lemma for renegeu 42346 and similar. Remove a change in bound variables from renegeulemv 42344. (Contributed by Steven Nguyen, 28-Jan-2023.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴)       (𝜑 → ∃!𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴)
 
Theoremrenegeu 42346* Existential uniqueness of real negatives. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
 
Theoremrernegcl 42347 Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
 
Theoremrenegadd 42348 Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0))
 
Theoremrenegid 42349 Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) = 0)
 
Theoremreneg0addlid 42350 Negative zero is a left additive identity. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ → ((0 − 0) + 𝐴) = 𝐴)
 
Theoremresubeulem1 42351 Lemma for resubeu 42353. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ → (0 + (0 − (0 + 0))) = (0 − 0))
 
Theoremresubeulem2 42352 Lemma for resubeu 42353. A value which when added to 𝐴, results in 𝐵. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵)
 
Theoremresubeu 42353* Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
 
Theoremrersubcl 42354 Closure for real subtraction. Based on subcl 11535. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) ∈ ℝ)
 
Theoremresubadd 42355 Relation between real subtraction and addition. Based on subadd 11539. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
 
Theoremresubaddd 42356 Relationship between subtraction and addition. Based on subaddd 11665. (Contributed by Steven Nguyen, 8-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
 
Theoremresubf 42357 Real subtraction is an operation on the real numbers. Based on subf 11538. (Contributed by Steven Nguyen, 7-Jan-2023.)
:(ℝ × ℝ)⟶ℝ
 
Theoremrepncan2 42358 Addition and subtraction of equals. Compare pncan2 11543. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
 
Theoremrepncan3 42359 Addition and subtraction of equals. Based on pncan3 11544. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 𝐴)) = 𝐵)
 
Theoremreaddsub 42360 Law for addition and subtraction. (Contributed by Steven Nguyen, 28-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 𝐶) + 𝐵))
 
Theoremreladdrsub 42361 Move LHS of a sum into RHS of a (real) difference. Version of mvlladdd 11701 with real subtraction. (Contributed by Steven Nguyen, 8-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (𝐴 + 𝐵) = 𝐶)       (𝜑𝐵 = (𝐶 𝐴))
 
Theoremreltsub1 42362 Subtraction from both sides of 'less than'. Compare ltsub1 11786. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 𝐶) < (𝐵 𝐶)))
 
Theoremreltsubadd2 42363 'Less than' relationship between addition and subtraction. Compare ltsubadd2 11761. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) < 𝐶𝐴 < (𝐵 + 𝐶)))
 
Theoremresubcan2 42364 Cancellation law for real subtraction. Compare subcan2 11561. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremresubsub4 42365 Law for double subtraction. Compare subsub4 11569. (Contributed by Steven Nguyen, 14-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) − 𝐶) = (𝐴 (𝐵 + 𝐶)))
 
Theoremrennncan2 42366 Cancellation law for real subtraction. Compare nnncan2 11573. (Contributed by Steven Nguyen, 14-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐶) − (𝐵 𝐶)) = (𝐴 𝐵))
 
Theoremrenpncan3 42367 Cancellation law for real subtraction. Compare npncan3 11574. (Contributed by Steven Nguyen, 28-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) + (𝐶 𝐴)) = (𝐶 𝐵))
 
Theoremrepnpcan 42368 Cancellation law for addition and real subtraction. Compare pnpcan 11575. (Contributed by Steven Nguyen, 19-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 𝐶))
 
Theoremreppncan 42369 Cancellation law for mixed addition and real subtraction. Compare ppncan 11578. (Contributed by SN, 3-Sep-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + (𝐵 𝐶)) = (𝐴 + 𝐵))
 
Theoremresubidaddlidlem 42370 Lemma for resubidaddlid 42371. A special case of npncan 11557. (Contributed by Steven Nguyen, 8-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (𝐴 𝐵) = (𝐵 𝐶))       (𝜑 → ((𝐴 𝐵) + (𝐵 𝐶)) = (𝐴 𝐶))
 
Theoremresubidaddlid 42371 Any real number subtracted from itself forms a left additive identity. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 𝐴) + 𝐵) = 𝐵)
 
Theoremresubdi 42372 Distribution of multiplication over real subtraction. (Contributed by Steven Nguyen, 3-Jun-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · (𝐵 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
 
Theoremre1m1e0m0 42373 Equality of two left-additive identities. See resubidaddlid 42371. Uses ax-i2m1 11252. (Contributed by SN, 25-Dec-2023.)
(1 − 1) = (0 − 0)
 
Theoremsn-00idlem1 42374 Lemma for sn-00id 42377. (Contributed by SN, 25-Dec-2023.)
(𝐴 ∈ ℝ → (𝐴 · (0 − 0)) = (𝐴 𝐴))
 
Theoremsn-00idlem2 42375 Lemma for sn-00id 42377. (Contributed by SN, 25-Dec-2023.)
((0 − 0) ≠ 0 → (0 − 0) = 1)
 
Theoremsn-00idlem3 42376 Lemma for sn-00id 42377. (Contributed by SN, 25-Dec-2023.)
((0 − 0) = 1 → (0 + 0) = 0)
 
Theoremsn-00id 42377 00id 11465 proven without ax-mulcom 11248 but using ax-1ne0 11253. (Though note that the current version of 00id 11465 can be changed to avoid ax-icn 11243, ax-addcl 11244, ax-mulcl 11246, ax-i2m1 11252, ax-cnre 11257. Most of this is by using 0cnALT3 42248 instead of 0cn 11282). (Contributed by SN, 25-Dec-2023.) (Proof modification is discouraged.)
(0 + 0) = 0
 
Theoremre0m0e0 42378 Real number version of 0m0e0 12413 proven without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.)
(0 − 0) = 0
 
Theoremreaddlid 42379 Real number version of addlid 11473. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴)
 
Theoremsn-addlid 42380 addlid 11473 without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
 
Theoremremul02 42381 Real number version of mul02 11468 proven without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (0 · 𝐴) = 0)
 
Theoremsn-0ne2 42382 0ne2 12500 without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.)
0 ≠ 2
 
Theoremremul01 42383 Real number version of mul01 11469 proven without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 · 0) = 0)
 
Theoremresubid 42384 Subtraction of a real number from itself (compare subid 11555). (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 𝐴) = 0)
 
Theoremreaddrid 42385 Real number version of addrid 11470 without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
 
Theoremresubid1 42386 Real number version of subid1 11556 without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 0) = 𝐴)
 
Theoremrenegneg 42387 A real number is equal to the negative of its negative. Compare negneg 11586. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)
 
Theoremreaddcan2 42388 Commuted version of readdcan 11464 without ax-mulcom 11248. (Contributed by SN, 21-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremrenegid2 42389 Commuted version of renegid 42349. (Contributed by SN, 4-May-2024.)
(𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)
 
Theoremremulneg2d 42390 Product with negative is negative of product. (Contributed by SN, 25-Jan-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 · (0 − 𝐵)) = (0 − (𝐴 · 𝐵)))
 
Theoremsn-it0e0 42391 Proof of it0e0 12515 without ax-mulcom 11248. Informally, a real number times 0 is 0, and 𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11257 and renegid2 42389. (Contributed by SN, 30-Apr-2024.)
(i · 0) = 0
 
Theoremsn-negex12 42392* A combination of cnegex 11471 and cnegex2 11472, this proof takes cnre 11287 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.) (Proof shortened by SN, 4-Jul-2025.)
(𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))
 
Theoremsn-negex 42393* Proof of cnegex 11471 without ax-mulcom 11248. (Contributed by SN, 30-Apr-2024.)
(𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝐴 + 𝑏) = 0)
 
Theoremsn-negex2 42394* Proof of cnegex2 11472 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝑏 + 𝐴) = 0)
 
Theoremsn-addcand 42395 addcand 11493 without ax-mulcom 11248. Note how the proof is almost identical to addcan 11474. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremsn-addrid 42396 addrid 11470 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
 
Theoremsn-addcan2d 42397 addcan2d 11494 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremreixi 42398 ixi 11919 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.)
(i · i) = (0 − 1)
 
Theoremrei4 42399 i4 14253 without ax-mulcom 11248. (Contributed by SN, 27-May-2024.)
((i · i) · (i · i)) = 1
 
Theoremsn-addid0 42400 A number that sums to itself is zero. Compare addid0 11709, readdridaddlidd 42253. (Contributed by SN, 5-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (𝐴 + 𝐴) = 𝐴)       (𝜑𝐴 = 0)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >