![]() |
Metamath
Proof Explorer Theorem List (p. 424 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sumcubes 42301* | The sum of the first 𝑁 perfect cubes is the sum of the first 𝑁 nonnegative integers, squared. This is the Proof by Nicomachus from https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes using induction and index shifting to collect all the odd numbers. (Contributed by SN, 22-Mar-2025.) |
⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2)) | ||
Theorem | pine0 42302 | π is nonzero. (Contributed by SN, 25-Apr-2025.) |
⊢ π ≠ 0 | ||
Theorem | ine1 42303 | i is not 1. (Contributed by SN, 25-Apr-2025.) |
⊢ i ≠ 1 | ||
Theorem | 0tie0 42304 | 0 times i equals 0. (Contributed by SN, 25-Apr-2025.) |
⊢ (0 · i) = 0 | ||
Theorem | it1ei 42305 | i times 1 equals i. (Contributed by SN, 25-Apr-2025.) |
⊢ (i · 1) = i | ||
Theorem | 1tiei 42306 | 1 times i equals i. (Contributed by SN, 25-Apr-2025.) |
⊢ (1 · i) = i | ||
Theorem | itrere 42307 | i times a real is real iff the real is zero. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0)) | ||
Theorem | retire 42308 | A real times i is real iff the real is zero. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0)) | ||
Theorem | oexpreposd 42309 | Lemma for dffltz 42589. TODO-SN?: This can be used to show exp11d 42313 holds for all integers when the exponent is odd. The more standard ¬ 2 ∥ 𝑀 should be used. (Contributed by SN, 4-Mar-2023.) |
⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ (𝑀 / 2) ∈ ℕ) ⇒ ⊢ (𝜑 → (0 < 𝑁 ↔ 0 < (𝑁↑𝑀))) | ||
Theorem | explt1d 42310 | A nonnegative real number less than one raised to a positive integer is less than one. (Contributed by SN, 3-Jul-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) < 1) | ||
Theorem | expeq1d 42311 | A nonnegative real number is one if and only if it is one when raised to a positive integer. (Contributed by SN, 3-Jul-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) = 1 ↔ 𝐴 = 1)) | ||
Theorem | expeqidd 42312 | A nonnegative real number is zero or one if and only if it is itself when raised to an integer greater than one. (Contributed by SN, 3-Jul-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) | ||
Theorem | exp11d 42313 | exp11nnd 14310 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | 0dvds0 42314 | 0 divides 0. (Contributed by SN, 15-Sep-2024.) |
⊢ 0 ∥ 0 | ||
Theorem | absdvdsabsb 42315 | Divisibility is invariant under taking the absolute value on both sides. (Contributed by SN, 15-Sep-2024.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁))) | ||
Theorem | gcdnn0id 42316 | The gcd of a nonnegative integer and itself is the integer. (Contributed by SN, 25-Aug-2024.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 gcd 𝑁) = 𝑁) | ||
Theorem | gcdle1d 42317 | The greatest common divisor of a positive integer and another integer is less than or equal to the positive integer. (Contributed by SN, 25-Aug-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) ≤ 𝑀) | ||
Theorem | gcdle2d 42318 | The greatest common divisor of a positive integer and another integer is less than or equal to the positive integer. (Contributed by SN, 25-Aug-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) ≤ 𝑁) | ||
Theorem | dvdsexpad 42319 | Deduction associated with dvdsexpim 16602. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∥ 𝐵) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∥ (𝐵↑𝑁)) | ||
Theorem | dvdsexpnn 42320 | dvdssqlem 16613 generalized to positive integer exponents. (Contributed by SN, 20-Aug-2024.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | ||
Theorem | dvdsexpnn0 42321 | dvdsexpnn 42320 generalized to include zero bases. (Contributed by SN, 15-Sep-2024.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | ||
Theorem | dvdsexpb 42322 | dvdssq 16614 generalized to positive integer exponents. (Contributed by SN, 15-Sep-2024.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | ||
Theorem | posqsqznn 42323 | When a positive rational squared is an integer, the rational is a positive integer. zsqrtelqelz 16805 with all terms squared and positive. (Contributed by SN, 23-Aug-2024.) |
⊢ (𝜑 → (𝐴↑2) ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ) | ||
Theorem | zdivgd 42324* | Two ways to express "𝑁 is an integer multiple of 𝑀". Originally a subproof of zdiv 12713. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝑀 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℂ) & ⊢ (𝜑 → 𝑀 ≠ 0) ⇒ ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | ||
Theorem | efne0d 42325 | The exponential of a complex number is nonzero, deduction form. EDITORIAL: Using efne0d 42325 in efne0 16145 is shorter than vice versa. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≠ 0) | ||
Theorem | efsubd 42326 | Difference of exponents law for exponential function, deduction form. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) | ||
Theorem | ef11d 42327* | General condition for the exponential function to be one-to-one. efper 26539 shows that exponentiation is periodic. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((exp‘𝐴) = (exp‘𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + ((i · (2 · π)) · 𝑛)))) | ||
Theorem | logccne0d 42328 | The logarithm isn't 0 if its argument isn't 0 or 1, deduction form. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐴 ≠ 1) ⇒ ⊢ (𝜑 → (log‘𝐴) ≠ 0) | ||
Theorem | cxp112d 42329* | General condition for complex exponentiation to be one-to-one with respect to the second argument. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 1) ⇒ ⊢ (𝜑 → ((𝐶↑𝑐𝐴) = (𝐶↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘𝐶))))) | ||
Theorem | cxp111d 42330* | General condition for complex exponentiation to be one-to-one with respect to the first argument. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴↑𝑐𝐶) = (𝐵↑𝑐𝐶) ↔ ∃𝑛 ∈ ℤ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) | ||
Theorem | cxpi11d 42331* | i to the powers of 𝐴 and 𝐵 are equal iff 𝐴 and 𝐵 are a multiple of 4 apart. EDITORIAL: This theorem may be revised to a more convenient form. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛)))) | ||
Theorem | logne0d 42332 | Deduction form of logne0 26639. See logccne0d 42328 for a more general version. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ≠ 1) ⇒ ⊢ (𝜑 → (log‘𝐴) ≠ 0) | ||
Theorem | rxp112d 42333 | Real exponentiation is one-to-one with respect to the second argument. (TODO: Note that the base 𝐶 must be positive since -𝐶↑𝐴 is 𝐶↑𝐴 · e↑iπ𝐴, so in the negative case 𝐴 = 𝐵 + 2𝑘). (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 1) & ⊢ (𝜑 → (𝐶↑𝑐𝐴) = (𝐶↑𝑐𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | log11d 42334 | The natural logarithm is one-to-one. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((log‘𝐴) = (log‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | rplog11d 42335 | The natural logarithm is one-to-one on positive reals. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((log‘𝐴) = (log‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | rxp11d 42336 | Real exponentiation is one-to-one with respect to the first argument. (Contributed by SN, 25-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → (𝐴↑𝑐𝐶) = (𝐵↑𝑐𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | tanhalfpim 42337 | The tangent of π / 2 minus a number is the cotangent, here represented by cos𝐴 / sin𝐴. (Contributed by SN, 2-Sep-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (sin‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘((π / 2) − 𝐴)) = ((cos‘𝐴) / (sin‘𝐴))) | ||
Theorem | tan3rdpi 42338 | The tangent of π / 3 is √3. (Contributed by SN, 2-Sep-2025.) |
⊢ (tan‘(π / 3)) = (√‘3) | ||
Theorem | asin1half 42339 | The arcsine of 1 / 2 is π / 6. (Contributed by SN, 31-Aug-2025.) |
⊢ (arcsin‘(1 / 2)) = (π / 6) | ||
Theorem | acos1half 42340 | The arccosine of 1 / 2 is π / 3. (Contributed by SN, 31-Aug-2024.) |
⊢ (arccos‘(1 / 2)) = (π / 3) | ||
Syntax | cresub 42341 | Real number subtraction. |
class −ℝ | ||
Definition | df-resub 42342* | Define subtraction between real numbers. This operator saves a few axioms over df-sub 11522 in certain situations. Theorem resubval 42343 shows its value, resubadd 42355 relates it to addition, and rersubcl 42354 proves its closure. It is the restriction of df-sub 11522 to the reals: subresre 42406. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ −ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥)) | ||
Theorem | resubval 42343* | Value of real subtraction, which is the (unique) real 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) | ||
Theorem | renegeulemv 42344* | Lemma for renegeu 42346 and similar. Derive existential uniqueness from existence. (Contributed by Steven Nguyen, 28-Jan-2023.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) | ||
Theorem | renegeulem 42345* | Lemma for renegeu 42346 and similar. Remove a change in bound variables from renegeulemv 42344. (Contributed by Steven Nguyen, 28-Jan-2023.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) | ||
Theorem | renegeu 42346* | Existential uniqueness of real negatives. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
Theorem | rernegcl 42347 | Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | ||
Theorem | renegadd 42348 | Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0)) | ||
Theorem | renegid 42349 | Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) | ||
Theorem | reneg0addlid 42350 | Negative zero is a left additive identity. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ (𝐴 ∈ ℝ → ((0 −ℝ 0) + 𝐴) = 𝐴) | ||
Theorem | resubeulem1 42351 | Lemma for resubeu 42353. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) | ||
Theorem | resubeulem2 42352 | Lemma for resubeu 42353. A value which when added to 𝐴, results in 𝐵. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵))) = 𝐵) | ||
Theorem | resubeu 42353* | Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) | ||
Theorem | rersubcl 42354 | Closure for real subtraction. Based on subcl 11535. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) ∈ ℝ) | ||
Theorem | resubadd 42355 | Relation between real subtraction and addition. Based on subadd 11539. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
Theorem | resubaddd 42356 | Relationship between subtraction and addition. Based on subaddd 11665. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
Theorem | resubf 42357 | Real subtraction is an operation on the real numbers. Based on subf 11538. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ −ℝ :(ℝ × ℝ)⟶ℝ | ||
Theorem | repncan2 42358 | Addition and subtraction of equals. Compare pncan2 11543. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐴) = 𝐵) | ||
Theorem | repncan3 42359 | Addition and subtraction of equals. Based on pncan3 11544. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 −ℝ 𝐴)) = 𝐵) | ||
Theorem | readdsub 42360 | Law for addition and subtraction. (Contributed by Steven Nguyen, 28-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵)) | ||
Theorem | reladdrsub 42361 | Move LHS of a sum into RHS of a (real) difference. Version of mvlladdd 11701 with real subtraction. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 −ℝ 𝐴)) | ||
Theorem | reltsub1 42362 | Subtraction from both sides of 'less than'. Compare ltsub1 11786. (Contributed by SN, 13-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 −ℝ 𝐶) < (𝐵 −ℝ 𝐶))) | ||
Theorem | reltsubadd2 42363 | 'Less than' relationship between addition and subtraction. Compare ltsubadd2 11761. (Contributed by SN, 13-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) | ||
Theorem | resubcan2 42364 | Cancellation law for real subtraction. Compare subcan2 11561. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | resubsub4 42365 | Law for double subtraction. Compare subsub4 11569. (Contributed by Steven Nguyen, 14-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) −ℝ 𝐶) = (𝐴 −ℝ (𝐵 + 𝐶))) | ||
Theorem | rennncan2 42366 | Cancellation law for real subtraction. Compare nnncan2 11573. (Contributed by Steven Nguyen, 14-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) −ℝ (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐵)) | ||
Theorem | renpncan3 42367 | Cancellation law for real subtraction. Compare npncan3 11574. (Contributed by Steven Nguyen, 28-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) + (𝐶 −ℝ 𝐴)) = (𝐶 −ℝ 𝐵)) | ||
Theorem | repnpcan 42368 | Cancellation law for addition and real subtraction. Compare pnpcan 11575. (Contributed by Steven Nguyen, 19-May-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ (𝐴 + 𝐶)) = (𝐵 −ℝ 𝐶)) | ||
Theorem | reppncan 42369 | Cancellation law for mixed addition and real subtraction. Compare ppncan 11578. (Contributed by SN, 3-Sep-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + (𝐵 −ℝ 𝐶)) = (𝐴 + 𝐵)) | ||
Theorem | resubidaddlidlem 42370 | Lemma for resubidaddlid 42371. A special case of npncan 11557. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) ⇒ ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) | ||
Theorem | resubidaddlid 42371 | Any real number subtracted from itself forms a left additive identity. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 −ℝ 𝐴) + 𝐵) = 𝐵) | ||
Theorem | resubdi 42372 | Distribution of multiplication over real subtraction. (Contributed by Steven Nguyen, 3-Jun-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · (𝐵 −ℝ 𝐶)) = ((𝐴 · 𝐵) −ℝ (𝐴 · 𝐶))) | ||
Theorem | re1m1e0m0 42373 | Equality of two left-additive identities. See resubidaddlid 42371. Uses ax-i2m1 11252. (Contributed by SN, 25-Dec-2023.) |
⊢ (1 −ℝ 1) = (0 −ℝ 0) | ||
Theorem | sn-00idlem1 42374 | Lemma for sn-00id 42377. (Contributed by SN, 25-Dec-2023.) |
⊢ (𝐴 ∈ ℝ → (𝐴 · (0 −ℝ 0)) = (𝐴 −ℝ 𝐴)) | ||
Theorem | sn-00idlem2 42375 | Lemma for sn-00id 42377. (Contributed by SN, 25-Dec-2023.) |
⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) | ||
Theorem | sn-00idlem3 42376 | Lemma for sn-00id 42377. (Contributed by SN, 25-Dec-2023.) |
⊢ ((0 −ℝ 0) = 1 → (0 + 0) = 0) | ||
Theorem | sn-00id 42377 | 00id 11465 proven without ax-mulcom 11248 but using ax-1ne0 11253. (Though note that the current version of 00id 11465 can be changed to avoid ax-icn 11243, ax-addcl 11244, ax-mulcl 11246, ax-i2m1 11252, ax-cnre 11257. Most of this is by using 0cnALT3 42248 instead of 0cn 11282). (Contributed by SN, 25-Dec-2023.) (Proof modification is discouraged.) |
⊢ (0 + 0) = 0 | ||
Theorem | re0m0e0 42378 | Real number version of 0m0e0 12413 proven without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.) |
⊢ (0 −ℝ 0) = 0 | ||
Theorem | readdlid 42379 | Real number version of addlid 11473. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | ||
Theorem | sn-addlid 42380 | addlid 11473 without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | ||
Theorem | remul02 42381 | Real number version of mul02 11468 proven without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) | ||
Theorem | sn-0ne2 42382 | 0ne2 12500 without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.) |
⊢ 0 ≠ 2 | ||
Theorem | remul01 42383 | Real number version of mul01 11469 proven without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) | ||
Theorem | resubid 42384 | Subtraction of a real number from itself (compare subid 11555). (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (𝐴 −ℝ 𝐴) = 0) | ||
Theorem | readdrid 42385 | Real number version of addrid 11470 without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | ||
Theorem | resubid1 42386 | Real number version of subid1 11556 without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (𝐴 −ℝ 0) = 𝐴) | ||
Theorem | renegneg 42387 | A real number is equal to the negative of its negative. Compare negneg 11586. (Contributed by SN, 13-Feb-2024.) |
⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) | ||
Theorem | readdcan2 42388 | Commuted version of readdcan 11464 without ax-mulcom 11248. (Contributed by SN, 21-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | renegid2 42389 | Commuted version of renegid 42349. (Contributed by SN, 4-May-2024.) |
⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + 𝐴) = 0) | ||
Theorem | remulneg2d 42390 | Product with negative is negative of product. (Contributed by SN, 25-Jan-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · (0 −ℝ 𝐵)) = (0 −ℝ (𝐴 · 𝐵))) | ||
Theorem | sn-it0e0 42391 | Proof of it0e0 12515 without ax-mulcom 11248. Informally, a real number times 0 is 0, and ∃𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11257 and renegid2 42389. (Contributed by SN, 30-Apr-2024.) |
⊢ (i · 0) = 0 | ||
Theorem | sn-negex12 42392* | A combination of cnegex 11471 and cnegex2 11472, this proof takes cnre 11287 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.) (Proof shortened by SN, 4-Jul-2025.) |
⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)) | ||
Theorem | sn-negex 42393* | Proof of cnegex 11471 without ax-mulcom 11248. (Contributed by SN, 30-Apr-2024.) |
⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝐴 + 𝑏) = 0) | ||
Theorem | sn-negex2 42394* | Proof of cnegex2 11472 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.) |
⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝑏 + 𝐴) = 0) | ||
Theorem | sn-addcand 42395 | addcand 11493 without ax-mulcom 11248. Note how the proof is almost identical to addcan 11474. (Contributed by SN, 5-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | sn-addrid 42396 | addrid 11470 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.) |
⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
Theorem | sn-addcan2d 42397 | addcan2d 11494 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | reixi 42398 | ixi 11919 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.) |
⊢ (i · i) = (0 −ℝ 1) | ||
Theorem | rei4 42399 | i4 14253 without ax-mulcom 11248. (Contributed by SN, 27-May-2024.) |
⊢ ((i · i) · (i · i)) = 1 | ||
Theorem | sn-addid0 42400 | A number that sums to itself is zero. Compare addid0 11709, readdridaddlidd 42253. (Contributed by SN, 5-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 0) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |