![]() |
Metamath
Proof Explorer Theorem List (p. 424 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30166) |
![]() (30167-31689) |
![]() (31690-47842) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pwelg 42301* | The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020.) |
⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) | ||
Theorem | pwinfig 42302* | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.) |
⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) | ||
Theorem | pwinfi2 42303 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑈 is a weak universe. (Contributed by RP, 21-Mar-2020.) |
⊢ (𝑈 ∈ WUni → (𝐴 ∈ (𝑈 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑈 ∖ Fin))) | ||
Theorem | pwinfi3 42304 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.) |
⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) | ||
Theorem | pwinfi 42305 | The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020.) |
⊢ (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin)) | ||
While there is not yet a definition, the finite intersection property of a class is introduced by fiint 9323 where two textbook definitions are shown to be equivalent. This property is seen often with ordinal numbers (onin 6395, ordelinel 6465), chains of sets ordered by the proper subset relation (sorpssin 7720), various sets in the field of topology (inopn 22400, incld 22546, innei 22628, ... ) and "universal" classes like weak universes (wunin 10707, tskin 10753) and the class of all sets (inex1g 5319). | ||
Theorem | fipjust 42306* | A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020.) |
⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 ∩ 𝑣) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) | ||
Theorem | cllem0 42307* | The class of all sets with property 𝜑(𝑧) is closed under the binary operation on sets defined in 𝑅(𝑥, 𝑦). (Contributed by RP, 3-Jan-2020.) |
⊢ 𝑉 = {𝑧 ∣ 𝜑} & ⊢ 𝑅 ∈ 𝑈 & ⊢ (𝑧 = 𝑅 → (𝜑 ↔ 𝜓)) & ⊢ (𝑧 = 𝑥 → (𝜑 ↔ 𝜒)) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ ((𝜒 ∧ 𝜃) → 𝜓) ⇒ ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 | ||
Theorem | superficl 42308* | The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
Theorem | superuncl 42309* | The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
Theorem | ssficl 42310* | The class of all subsets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
Theorem | ssuncl 42311* | The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
Theorem | ssdifcl 42312* | The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∖ 𝑦) ∈ 𝐴 | ||
Theorem | sssymdifcl 42313* | The class of all subsets of a class is closed under symmetric difference. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ 𝐴 | ||
Theorem | fiinfi 42314* | If two classes have the finite intersection property, then so does their intersection. (Contributed by RP, 1-Jan-2020.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶) | ||
Theorem | rababg 42315 | Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.) |
⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ 𝜑}) | ||
Theorem | elinintab 42316* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | elmapintrab 42317* | Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020.) |
⊢ 𝐶 ∈ V & ⊢ 𝐶 ⊆ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶)))) | ||
Theorem | elinintrab 42318* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)))) | ||
Theorem | inintabss 42319* | Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} | ||
Theorem | inintabd 42320* | Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) | ||
Theorem | xpinintabd 42321* | Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) | ||
Theorem | relintabex 42322 | If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.) |
⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) | ||
Theorem | elcnvcnvintab 42323* | Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | relintab 42324* | Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.) |
⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) | ||
Theorem | nonrel 42325 | A non-relation is equal to the base class with all ordered pairs removed. (Contributed by RP, 25-Oct-2020.) |
⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | ||
Theorem | elnonrel 42326 | Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) | ||
Theorem | cnvssb 42327 | Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.) |
⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) | ||
Theorem | relnonrel 42328 | The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) | ||
Theorem | cnvnonrel 42329 | The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.) |
⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | ||
Theorem | brnonrel 42330 | A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020.) |
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) | ||
Theorem | dmnonrel 42331 | The domain of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ dom (𝐴 ∖ ◡◡𝐴) = ∅ | ||
Theorem | rnnonrel 42332 | The range of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ | ||
Theorem | resnonrel 42333 | A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ | ||
Theorem | imanonrel 42334 | An image under the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴) “ 𝐵) = ∅ | ||
Theorem | cononrel1 42335 | Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ | ||
Theorem | cononrel2 42336 | Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ | ||
See also idssxp 6048 by Thierry Arnoux. | ||
Theorem | elmapintab 42337* | Two ways to say a set is an element of mapped intersection of a class. Here 𝐹 maps elements of 𝐶 to elements of ∩ {𝑥 ∣ 𝜑} or 𝑥. (Contributed by RP, 19-Aug-2020.) |
⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) & ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) | ||
Theorem | fvnonrel 42338 | The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ | ||
Theorem | elinlem 42339 | Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020.) |
⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ( I ‘𝐴) ∈ 𝐶)) | ||
Theorem | elcnvcnvlem 42340 | Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) | ||
Original probably needs new subsection for Relation-related existence theorems. | ||
Theorem | cnvcnvintabd 42341* | Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ◡◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜓)}) | ||
Theorem | elcnvlem 42342 | Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.) |
⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ ⟨(2nd ‘𝑥), (1st ‘𝑥)⟩) ⇒ ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) | ||
Theorem | elcnvintab 42343* | Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.) |
⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) | ||
Theorem | cnvintabd 42344* | Value of the converse of the intersection of a nonempty class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) | ||
Theorem | undmrnresiss 42345* | Two ways of saying the identity relation restricted to the union of the domain and range of a relation is a subset of a relation. Generalization of reflexg 42346. (Contributed by RP, 26-Sep-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) | ||
Theorem | reflexg 42346* | Two ways of saying a relation is reflexive over its domain and range. (Contributed by RP, 4-Aug-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦))) | ||
Theorem | cnvssco 42347* | A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.) |
⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) | ||
Theorem | refimssco 42348 | Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) | ||
Theorem | cleq2lem 42349 | Equality implies bijection. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ 𝜑) ↔ (𝑅 ⊆ 𝐵 ∧ 𝜓))) | ||
Theorem | cbvcllem 42350* | Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜑)} = {𝑦 ∣ (𝑋 ⊆ 𝑦 ∧ 𝜓)} | ||
Theorem | clublem 42351* | If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.) |
⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | ||
Theorem | clss2lem 42352* | The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝜑 → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) | ||
Theorem | dfid7 42353* | Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.) |
⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) | ||
Theorem | mptrcllem 42354* | Show two versions of a closure with reflexive properties are equal. (Contributed by RP, 19-Oct-2020.) |
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → 𝜒) & ⊢ (𝑥 ∈ 𝑉 → 𝜃) & ⊢ (𝑥 ∈ 𝑉 → 𝜏) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ 𝜃)) & ⊢ (𝑧 = ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝑥 ∈ 𝑉 ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ 𝑉 ↦ ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) | ||
Theorem | cotrintab 42355 | The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020.) |
⊢ (𝜑 → (𝑥 ∘ 𝑥) ⊆ 𝑥) ⇒ ⊢ (∩ {𝑥 ∣ 𝜑} ∘ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑥 ∣ 𝜑} | ||
Theorem | rclexi 42356* | The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V | ||
Theorem | rtrclexlem 42357 | Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) | ||
Theorem | rtrclex 42358* | The reflexive-transitive closure of a set exists. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝐴 ∈ V ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V) | ||
Theorem | trclubgNEW 42359* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | ||
Theorem | trclubNEW 42360* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) | ||
Theorem | trclexi 42361* | The transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V | ||
Theorem | rtrclexi 42362* | The reflexive-transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V | ||
Theorem | clrellem 42363* | When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) |
⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝜑 → Rel 𝑋) & ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | ||
Theorem | clcnvlem 42364* | When 𝐴, an upper bound of the closure, exists and certain substitutions hold the converse of the closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (𝜒 → 𝜓)) & ⊢ ((𝜑 ∧ 𝑦 = ◡𝑥) → (𝜓 → 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)}) | ||
Theorem | cnvtrucl0 42365* | The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) | ||
Theorem | cnvrcl0 42366* | The converse of the reflexive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)}) | ||
Theorem | cnvtrcl0 42367* | The converse of the transitive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)}) | ||
Theorem | dmtrcl 42368* | The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) | ||
Theorem | rntrcl 42369* | The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ran 𝑋) | ||
Theorem | dfrtrcl5 42370* | Definition of reflexive-transitive closure as a standard closure. (Contributed by RP, 1-Nov-2020.) |
⊢ t* = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))}) | ||
Theorem | trcleq2lemRP 42371 | Equality implies bijection. (Contributed by RP, 5-May-2020.) (Proof modification is discouraged.) |
⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) | ||
This is based on the observation that the real and imaginary parts of a complex number can be calculated from the number's absolute and real part and the sign of its imaginary part. Formalization of the formula in sqrtcval 42382 was motivated by a short Michael Penn video. | ||
Theorem | sqrtcvallem1 42372 | Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval 42382. (Contributed by RP, 17-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+)) | ||
Theorem | reabsifneg 42373 | Alternate expression for the absolute value of a real number. Lemma for sqrtcval 42382. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 < 0, -𝐴, 𝐴)) | ||
Theorem | reabsifnpos 42374 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 ≤ 0, -𝐴, 𝐴)) | ||
Theorem | reabsifpos 42375 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(0 < 𝐴, 𝐴, -𝐴)) | ||
Theorem | reabsifnneg 42376 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(0 ≤ 𝐴, 𝐴, -𝐴)) | ||
Theorem | reabssgn 42377 | Alternate expression for the absolute value of a real number. (Contributed by RP, 22-May-2024.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = ((sgn‘𝐴) · 𝐴)) | ||
Theorem | sqrtcvallem2 42378 | Equivalent to saying that the square of the imaginary component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval 42382. See imsqrtval 42385. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) | ||
Theorem | sqrtcvallem3 42379 | Equivalent to saying that the absolute value of the imaginary component of the square root of a complex number is a real number. Lemma for sqrtcval 42382, sqrtcval2 42383, resqrtval 42384, and imsqrtval 42385. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ) | ||
Theorem | sqrtcvallem4 42380 | Equivalent to saying that the square of the real component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval 42382. See resqrtval 42384. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)) | ||
Theorem | sqrtcvallem5 42381 | Equivalent to saying that the real component of the square root of a complex number is a real number. Lemma for resqrtval 42384 and imsqrtval 42385. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℝ) | ||
Theorem | sqrtcval 42382 | Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right-hand side is decomposed into real and imaginary parts in the format expected by crrei 15138 and crimi 15139. This formula can be found in section 3.7.27 of Handbook of Mathematical Functions, ed. M. Abramowitz and I. A. Stegun (1965, Dover Press). (Contributed by RP, 18-May-2024.) |
⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) | ||
Theorem | sqrtcval2 42383 | Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right side is slightly more compact than sqrtcval 42382. (Contributed by RP, 18-May-2024.) |
⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) | ||
Theorem | resqrtval 42384 | Real part of the complex square root. (Contributed by RP, 18-May-2024.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘(√‘𝐴)) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) | ||
Theorem | imsqrtval 42385 | Imaginary part of the complex square root. (Contributed by RP, 18-May-2024.) |
⊢ (𝐴 ∈ ℂ → (ℑ‘(√‘𝐴)) = (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) | ||
Theorem | resqrtvalex 42386 | Example for resqrtval 42384. (Contributed by RP, 21-May-2024.) |
⊢ (ℜ‘(√‘(;15 + (i · 8)))) = 4 | ||
Theorem | imsqrtvalex 42387 | Example for imsqrtval 42385. (Contributed by RP, 21-May-2024.) |
⊢ (ℑ‘(√‘(;15 + (i · 8)))) = 1 | ||
Theorem | al3im 42388 | Version of ax-4 1811 for a nested implication. (Contributed by RP, 13-Apr-2020.) |
⊢ (∀𝑥(𝜑 → (𝜓 → (𝜒 → 𝜃))) → (∀𝑥𝜑 → (∀𝑥𝜓 → (∀𝑥𝜒 → ∀𝑥𝜃)))) | ||
Theorem | intima0 42389* | Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.) |
⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} | ||
Theorem | elimaint 42390* | Element of image of intersection. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) | ||
Theorem | cnviun 42391* | Converse of indexed union. (Contributed by RP, 20-Jun-2020.) |
⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 | ||
Theorem | imaiun1 42392* | The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.) |
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) | ||
Theorem | coiun1 42393* | Composition with an indexed union. Proof analgous to that of coiun 6255. (Contributed by RP, 20-Jun-2020.) |
⊢ (∪ 𝑥 ∈ 𝐶 𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
Theorem | elintima 42394* | Element of intersection of images. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝑦 ∈ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ⟨𝑏, 𝑦⟩ ∈ 𝑎) | ||
Theorem | intimass 42395* | The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} | ||
Theorem | intimass2 42396* | The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐴 (𝑥 “ 𝐵) | ||
Theorem | intimag 42397* | Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020.) |
⊢ (∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) → (∩ 𝐴 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)}) | ||
Theorem | intimasn 42398* | Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) | ||
Theorem | intimasn2 42399* | Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ 𝑥 ∈ 𝐴 (𝑥 “ {𝐵})) | ||
Theorem | ss2iundf 42400* | Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝑌 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑦𝐺 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |