Home | Metamath
Proof Explorer Theorem List (p. 424 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29659) |
Hilbert Space Explorer
(29660-31182) |
Users' Mathboxes
(31183-46998) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nfcoll 42301 | Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹 Coll 𝐴) | ||
Theorem | collexd 42302 | The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ V) | ||
Theorem | cpcolld 42303* | Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝑥𝐹𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) | ||
Theorem | cpcoll2d 42304* | cpcolld 42303 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 𝑥𝐹𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) | ||
Theorem | grucollcld 42305 | A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) | ||
Theorem | ismnu 42306* |
The hypothesis of this theorem defines a class M of sets that we
temporarily call "minimal universes", and which will turn out
in
grumnueq 42332 to be exactly Grothendicek universes.
Minimal universes are
sets which satisfy the predicate on 𝑦 in rr-groth 42344, except for the
𝑥
∈ 𝑦 clause.
A minimal universe is closed under subsets (mnussd 42308), powersets (mnupwd 42312), and an operation which is similar to a combination of collection and union (mnuop3d 42316), from which closure under pairing (mnuprd 42321), unions (mnuunid 42322), and function ranges (mnurnd 42328) can be deduced, from which equivalence with Grothendieck universes (grumnueq 42332) can be deduced. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) | ||
Theorem | mnuop123d 42307* | Operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝒫 𝐴 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
Theorem | mnussd 42308* | Minimal universes are closed under subsets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | mnuss2d 42309* | mnussd 42308 with arguments provided with an existential quantifier. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → ∃𝑥 ∈ 𝑈 𝐴 ⊆ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑈) | ||
Theorem | mnu0eld 42310* | A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑈) | ||
Theorem | mnuop23d 42311* | Second and third operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹) → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | ||
Theorem | mnupwd 42312* | Minimal universes are closed under powersets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) | ||
Theorem | mnusnd 42313* | Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴} ∈ 𝑈) | ||
Theorem | mnuprssd 42314* | A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuprss2d 42315* | Special case of mnuprssd 42314. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ 𝐴 ⊆ 𝐶 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuop3d 42316* | Third operation of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | ||
Theorem | mnuprdlem1 42317* | Lemma for mnuprd 42321. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑤) | ||
Theorem | mnuprdlem2 42318* | Lemma for mnuprd 42321. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ¬ 𝐴 = ∅) & ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑤) | ||
Theorem | mnuprdlem3 42319* | Lemma for mnuprd 42321. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ Ⅎ𝑖𝜑 ⇒ ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) | ||
Theorem | mnuprdlem4 42320* | Lemma for mnuprd 42321. General case. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ¬ 𝐴 = ∅) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuprd 42321* | Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuunid 42322* | Minimal universes are closed under union. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) | ||
Theorem | mnuund 42323* | Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) | ||
Theorem | mnutrcld 42324* | Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | mnutrd 42325* | Minimal universes are transitive. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) ⇒ ⊢ (𝜑 → Tr 𝑈) | ||
Theorem | mnurndlem1 42326* | Lemma for mnurnd 42328. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝑈) & ⊢ 𝐴 ∈ V & ⊢ (𝜑 → ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝑤) | ||
Theorem | mnurndlem2 42327* | Lemma for mnurnd 42328. Deduction theorem input. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) | ||
Theorem | mnurnd 42328* | Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) | ||
Theorem | mnugrud 42329* | Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) ⇒ ⊢ (𝜑 → 𝑈 ∈ Univ) | ||
Theorem | grumnudlem 42330* | Lemma for grumnud 42331. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ 𝐹 = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) & ⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) & ⊢ ((ℎ ∈ (𝐹 Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑀) | ||
Theorem | grumnud 42331* | Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝐺 ∈ Univ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑀) | ||
Theorem | grumnueq 42332* | The class of Grothendieck universes is equal to the class of minimal universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ Univ = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | ||
Theorem | expandan 42333 | Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜃)) | ||
Theorem | expandexn 42334 | Expand an existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥𝜓) | ||
Theorem | expandral 42335 | Expand a restricted universal quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
Theorem | expandrexn 42336 | Expand a restricted existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
Theorem | expandrex 42337 | Expand a restricted existential quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜓)) | ||
Theorem | expanduniss 42338* | Expand ∪ 𝐴 ⊆ 𝐵 to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | ||
Theorem | ismnuprim 42339* | Express the predicate on 𝑈 in ismnu 42306 using only primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (∀𝑧 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ ∀𝑧(𝑧 ∈ 𝑈 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑈 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))))) | ||
Theorem | rr-grothprimbi 42340* | Express "every set is contained in a Grothendieck universe" using only primitives. The right side (without the outermost universal quantifier) is proven as rr-grothprim 42345. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (∀𝑥∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∀𝑥 ¬ ∀𝑦(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))))) | ||
Theorem | inagrud 42341 | Inaccessible levels of the cumulative hierarchy are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 → 𝐼 ∈ Inacc) ⇒ ⊢ (𝜑 → (𝑅1‘𝐼) ∈ Univ) | ||
Theorem | inaex 42342* | Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) | ||
Theorem | gruex 42343* | Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 | ||
Theorem | rr-groth 42344* | An equivalent of ax-groth 10693 using only simple defined symbols. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑓∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑦 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
Theorem | rr-grothprim 42345* | An equivalent of ax-groth 10693 using only primitives. This uses only 123 symbols, which is significantly less than the previous record of 163 established by grothprim 10704 (which uses some defined symbols, and requires 229 symbols if expanded to primitives). (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ¬ ∀𝑦(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))))) | ||
Theorem | ismnushort 42346* | Express the predicate on 𝑈 and 𝑧 in ismnu 42306 in a shorter form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 10-Oct-2024.) |
⊢ (∀𝑓 ∈ 𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
Theorem | dfuniv2 42347* | Alternative definition of Univ using only simple defined symbols. (Contributed by Rohan Ridenour, 10-Oct-2024.) |
⊢ Univ = {𝑦 ∣ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))} | ||
Theorem | rr-grothshortbi 42348* | Express "every set is contained in a Grothendieck universe" in a short form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 8-Oct-2024.) |
⊢ (∀𝑥∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∀𝑥∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) | ||
Theorem | rr-grothshort 42349* | A shorter equivalent of ax-groth 10693 than rr-groth 42344 using a few more simple defined symbols. (Contributed by Rohan Ridenour, 8-Oct-2024.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) | ||
Theorem | nanorxor 42350 | 'nand' is equivalent to the equivalence of inclusive and exclusive or. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) | ||
Theorem | undisjrab 42351 | Union of two disjoint restricted class abstractions; compare unrab 4264. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) | ||
Theorem | iso0 42352 | The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) | ||
Theorem | ssrecnpr 42353 | ℝ is a subset of both ℝ and ℂ. (Contributed by Steve Rodriguez, 22-Nov-2015.) |
⊢ (𝑆 ∈ {ℝ, ℂ} → ℝ ⊆ 𝑆) | ||
Theorem | seff 42354 | Let set 𝑆 be the real or complex numbers. Then the exponential function restricted to 𝑆 is a mapping from 𝑆 to 𝑆. (Contributed by Steve Rodriguez, 6-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) ⇒ ⊢ (𝜑 → (exp ↾ 𝑆):𝑆⟶𝑆) | ||
Theorem | sblpnf 42355 | The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 23673. (Contributed by Steve Rodriguez, 8-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) | ||
Theorem | prmunb2 42356* | The primes are unbounded. This generalizes prmunb 16721 to real 𝐴 with arch 12344 and lttrd 11250: every real is less than some positive integer, itself less than some prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝) | ||
Theorem | dvgrat 42357* | Ratio test for divergence of a complex infinite series. See e.g. remark "if (abs‘((𝑎‘(𝑛 + 1)) / (𝑎‘𝑛))) ≥ 1 for all large n..." in https://en.wikipedia.org/wiki/Ratio_test#The_test. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ ) | ||
Theorem | cvgdvgrat 42358* |
Ratio test for convergence and divergence of a complex infinite series.
If the ratio 𝑅 of the absolute values of successive
terms in an
infinite sequence 𝐹 converges to less than one, then the
infinite
sum of the terms of 𝐹 converges to a complex number; and
if 𝑅
converges greater then the sum diverges. This combined form of
cvgrat 15703 and dvgrat 42357 directly uses the limit of the ratio.
(It also demonstrates how to use climi2 15328 and absltd 15249 to transform a limit to an inequality cf. https://math.stackexchange.com/q/2215191 15249, and how to use r19.29a 3158 in a similar fashion to Mario Carneiro's proof sketch with rexlimdva 3151 at https://groups.google.com/g/metamath/c/2RPikOiXLMo 3151.) (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ≠ 0) & ⊢ 𝑅 = (𝑘 ∈ 𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑅 ⇝ 𝐿) & ⊢ (𝜑 → 𝐿 ≠ 1) ⇒ ⊢ (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ )) | ||
Theorem | radcnvrat 42359* | Let 𝐿 be the limit, if one exists, of the ratio (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))) (as in the ratio test cvgdvgrat 42358) as 𝑘 increases. Then the radius of convergence of power series Σ𝑛 ∈ ℕ0((𝐴‘𝑛) · (𝑥↑𝑛)) is (1 / 𝐿) if 𝐿 is nonzero. Proof "The limit involved in the ratio test..." in https://en.wikipedia.org/wiki/Radius_of_convergence 42358 —a few lines that evidently hide quite an involved process to confirm. (Contributed by Steve Rodriguez, 8-Mar-2020.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴‘𝑘) ≠ 0) & ⊢ (𝜑 → 𝐷 ⇝ 𝐿) & ⊢ (𝜑 → 𝐿 ≠ 0) ⇒ ⊢ (𝜑 → 𝑅 = (1 / 𝐿)) | ||
Theorem | reldvds 42360 | The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ Rel ∥ | ||
Theorem | nznngen 42361 | All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) | ||
Theorem | nzss 42362 | The set of multiples of m, mℤ, is a subset of those of n, nℤ, iff n divides m. Lemma 2.1(a) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑀)) | ||
Theorem | nzin 42363 | The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) | ||
Theorem | nzprmdif 42364 | Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℙ) & ⊢ (𝜑 → 𝑀 ≠ 𝑁) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) | ||
Theorem | hashnzfz 42365 | Special case of hashdvds 16582: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) ⇒ ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) | ||
Theorem | hashnzfz2 42366 | Special case of hashnzfz 42365: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) | ||
Theorem | hashnzfzclim 42367* | As the upper bound 𝐾 of the constraint interval (𝐽...𝐾) in hashnzfz 42365 increases, the resulting count of multiples tends to (𝐾 / 𝑀) —that is, there are approximately (𝐾 / 𝑀) multiples of 𝑀 in a finite interval of integers. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀)) | ||
Theorem | caofcan 42368* | Transfer a cancellation law like mulcan 11726 to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑇) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧)) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f 𝑅𝐻) ↔ 𝐺 = 𝐻)) | ||
Theorem | ofsubid 42369 | Function analogue of subid 11354. (Contributed by Steve Rodriguez, 5-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∘f − 𝐹) = (𝐴 × {0})) | ||
Theorem | ofmul12 42370 | Function analogue of mul12 11254. (Contributed by Steve Rodriguez, 13-Nov-2015.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹 ∘f · (𝐺 ∘f · 𝐻)) = (𝐺 ∘f · (𝐹 ∘f · 𝐻))) | ||
Theorem | ofdivrec 42371 | Function analogue of divrec 11763, a division analogue of ofnegsub 12085. (Contributed by Steve Rodriguez, 3-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹 ∘f · ((𝐴 × {1}) ∘f / 𝐺)) = (𝐹 ∘f / 𝐺)) | ||
Theorem | ofdivcan4 42372 | Function analogue of divcan4 11774. (Contributed by Steve Rodriguez, 4-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐹 ∘f · 𝐺) ∘f / 𝐺) = 𝐹) | ||
Theorem | ofdivdiv2 42373 | Function analogue of divdiv2 11801. (Contributed by Steve Rodriguez, 23-Nov-2015.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹 ∘f / (𝐺 ∘f / 𝐻)) = ((𝐹 ∘f · 𝐻) ∘f / 𝐺)) | ||
Theorem | lhe4.4ex1a 42374 | Example of the Fundamental Theorem of Calculus, part two (ftc2 25331): ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3). Section 4.4 example 1a of [LarsonHostetlerEdwards] p. 311. (The book teaches ftc2 25331 as simply the "Fundamental Theorem of Calculus", then ftc1 25329 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015.) (Revised by Steve Rodriguez, 31-Oct-2015.) |
⊢ ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3) | ||
Theorem | dvsconst 42375 | Derivative of a constant function on the real or complex numbers. The function may return a complex 𝐴 even if 𝑆 is ℝ. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) | ||
Theorem | dvsid 42376 | Derivative of the identity function on the real or complex numbers. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ( I ↾ 𝑆)) = (𝑆 × {1})) | ||
Theorem | dvsef 42377 | Derivative of the exponential function on the real or complex numbers. (Contributed by Steve Rodriguez, 12-Nov-2015.) |
⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (exp ↾ 𝑆)) = (exp ↾ 𝑆)) | ||
Theorem | expgrowthi 42378* | Exponential growth and decay model. See expgrowth 42380 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐾 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝑌 = (𝑡 ∈ 𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡)))) ⇒ ⊢ (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) | ||
Theorem | dvconstbi 42379* | The derivative of a function on 𝑆 is zero iff it is a constant function. Roughly a biconditional 𝑆 analogue of dvconst 25204 and dveq0 25287. Corresponds to integration formula "∫0 d𝑥 = 𝐶 " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑌:𝑆⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝑌) = 𝑆) ⇒ ⊢ (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐}))) | ||
Theorem | expgrowth 42380* |
Exponential growth and decay model. The derivative of a function y of
variable t equals a constant k times y itself, iff
y equals some
constant C times the exponential of kt. This theorem and
expgrowthi 42378 illustrate one of the simplest and most
crucial classes of
differential equations, equations that relate functions to their
derivatives.
Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model 42378); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ. Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘f · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and ∘f · is multiplication as a function operation. The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf 42378 pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case 42378. Statements for this and expgrowthi 42378 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐾 ∈ ℂ) & ⊢ (𝜑 → 𝑌:𝑆⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝑌) = 𝑆) ⇒ ⊢ (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡 ∈ 𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))) | ||
Syntax | cbcc 42381 | Extend class notation to include the generalized binomial coefficient operation. |
class C𝑐 | ||
Definition | df-bcc 42382* | Define a generalized binomial coefficient operation, which unlike df-bc 14131 allows complex numbers for the first argument. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) | ||
Theorem | bccval 42383 | Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) | ||
Theorem | bcccl 42384 | Closure of the generalized binomial coefficient. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐𝐾) ∈ ℂ) | ||
Theorem | bcc0 42385 | The generalized binomial coefficient 𝐶 choose 𝐾 is zero iff 𝐶 is an integer between zero and (𝐾 − 1) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1)))) | ||
Theorem | bccp1k 42386 | Generalized binomial coefficient: 𝐶 choose (𝐾 + 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶C𝑐𝐾) · ((𝐶 − 𝐾) / (𝐾 + 1)))) | ||
Theorem | bccm1k 42387 | Generalized binomial coefficient: 𝐶 choose (𝐾 − 1), when 𝐶 is not (𝐾 − 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ (ℂ ∖ {(𝐾 − 1)})) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾))) | ||
Theorem | bccn0 42388 | Generalized binomial coefficient: 𝐶 choose 0. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶C𝑐0) = 1) | ||
Theorem | bccn1 42389 | Generalized binomial coefficient: 𝐶 choose 1. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶C𝑐1) = 𝐶) | ||
Theorem | bccbc 42390 | The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾)) | ||
Theorem | uzmptshftfval 42391* | When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐵) & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = (𝑦 − 𝑁) → 𝐵 = 𝐶) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ 𝐶)) | ||
Theorem | dvradcnv2 42392* | The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is (at least) as large as the radius of convergence of 𝐺. This version of dvradcnv 25703 uses a shifted version of 𝐻 to match the sum form of (ℂ D 𝐹) in pserdv2 25712 (and shows how to use uzmptshftfval 42391 to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴‘𝑛)) · (𝑋↑(𝑛 − 1)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ ) | ||
Theorem | binomcxplemwb 42393 | Lemma for binomcxp 42402. The lemma in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (((𝐶 − 𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (𝐶 · (𝐶C𝑐𝐾))) | ||
Theorem | binomcxplemnn0 42394* | Lemma for binomcxp 42402. When 𝐶 is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom 15650 equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set (0...𝐶), and when the index set is widened beyond 𝐶 the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) | ||
Theorem | binomcxplemrat 42395* | Lemma for binomcxp 42402. As 𝑘 increases, this ratio's absolute value converges to one. Part of equation "Since continuity of the absolute value..." in the Wikibooks proof (proven for the inverse ratio, which we later show is no problem). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶 − 𝑘) / (𝑘 + 1)))) ⇝ 1) | ||
Theorem | binomcxplemfrat 42396* | Lemma for binomcxp 42402. binomcxplemrat 42395 implies that when 𝐶 is not a nonnegative integer, the absolute value of the ratio ((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) ⇝ 1) | ||
Theorem | binomcxplemradcnv 42397* | Lemma for binomcxp 42402. By binomcxplemfrat 42396 and radcnvrat 42359 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹‘𝑘) · (𝑏↑𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) | ||
Theorem | binomcxplemdvbinom 42398* | Lemma for binomcxp 42402. By the power and chain rules, calculate the derivative of ((1 + 𝑏)↑𝑐-𝐶), with respect to 𝑏 in the disk of convergence 𝐷. We later multiply the derivative in the later binomcxplemdvsum 42400 by this derivative to show that ((1 + 𝑏)↑𝑐𝐶) (with a nonnegated 𝐶) and the later sum, since both at 𝑏 = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏 ∈ 𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏 ∈ 𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))) | ||
Theorem | binomcxplemcvg 42399* | Lemma for binomcxp 42402. The sum in binomcxplemnn0 42394 and its derivative (see the next theorem, binomcxplemdvsum 42400) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) | ||
Theorem | binomcxplemdvsum 42400* | Lemma for binomcxp 42402. The derivative of the generalized sum in binomcxplemnn0 42394. Part of remark "This convergence allows to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑃 = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) ⇒ ⊢ (𝜑 → (ℂ D 𝑃) = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |