Detailed syntax breakdown of Definition df-pellfund
Step | Hyp | Ref
| Expression |
1 | | cpellfund 40642 |
. 2
class
PellFund |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cn 11956 |
. . . 4
class
ℕ |
4 | | csquarenn 40638 |
. . . 4
class
◻NN |
5 | 3, 4 | cdif 3888 |
. . 3
class (ℕ
∖ ◻NN) |
6 | | c1 10856 |
. . . . . 6
class
1 |
7 | | vz |
. . . . . . 7
setvar 𝑧 |
8 | 7 | cv 1540 |
. . . . . 6
class 𝑧 |
9 | | clt 10993 |
. . . . . 6
class
< |
10 | 6, 8, 9 | wbr 5078 |
. . . . 5
wff 1 <
𝑧 |
11 | 2 | cv 1540 |
. . . . . 6
class 𝑥 |
12 | | cpell14qr 40641 |
. . . . . 6
class
Pell14QR |
13 | 11, 12 | cfv 6430 |
. . . . 5
class
(Pell14QR‘𝑥) |
14 | 10, 7, 13 | crab 3069 |
. . . 4
class {𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧} |
15 | | cr 10854 |
. . . 4
class
ℝ |
16 | 14, 15, 9 | cinf 9161 |
. . 3
class
inf({𝑧 ∈
(Pell14QR‘𝑥) ∣
1 < 𝑧}, ℝ, <
) |
17 | 2, 5, 16 | cmpt 5161 |
. 2
class (𝑥 ∈ (ℕ ∖
◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < )) |
18 | 1, 17 | wceq 1541 |
1
wff PellFund =
(𝑥 ∈ (ℕ ∖
◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < )) |