Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrval Structured version   Visualization version   GIF version

Theorem pell1234qrval 42831
Description: Value of the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1234qrval (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
Distinct variable group:   𝑦,𝑧,𝑤,𝐷

Proof of Theorem pell1234qrval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6860 . . . . . . . 8 (𝑑 = 𝐷 → (√‘𝑑) = (√‘𝐷))
21oveq1d 7404 . . . . . . 7 (𝑑 = 𝐷 → ((√‘𝑑) · 𝑤) = ((√‘𝐷) · 𝑤))
32oveq2d 7405 . . . . . 6 (𝑑 = 𝐷 → (𝑧 + ((√‘𝑑) · 𝑤)) = (𝑧 + ((√‘𝐷) · 𝑤)))
43eqeq2d 2741 . . . . 5 (𝑑 = 𝐷 → (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ↔ 𝑦 = (𝑧 + ((√‘𝐷) · 𝑤))))
5 oveq1 7396 . . . . . . 7 (𝑑 = 𝐷 → (𝑑 · (𝑤↑2)) = (𝐷 · (𝑤↑2)))
65oveq2d 7405 . . . . . 6 (𝑑 = 𝐷 → ((𝑧↑2) − (𝑑 · (𝑤↑2))) = ((𝑧↑2) − (𝐷 · (𝑤↑2))))
76eqeq1d 2732 . . . . 5 (𝑑 = 𝐷 → (((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1 ↔ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))
84, 7anbi12d 632 . . . 4 (𝑑 = 𝐷 → ((𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1) ↔ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
982rexbidv 3203 . . 3 (𝑑 = 𝐷 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
109rabbidv 3416 . 2 (𝑑 = 𝐷 → {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1)} = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
11 df-pell1234qr 42825 . 2 Pell1234QR = (𝑑 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1)})
12 reex 11165 . . 3 ℝ ∈ V
1312rabex 5296 . 2 {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ∈ V
1410, 11, 13fvmpt 6970 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  cdif 3913  cfv 6513  (class class class)co 7389  cr 11073  1c1 11075   + caddc 11077   · cmul 11079  cmin 11411  cn 12187  2c2 12242  cz 12535  cexp 14032  csqrt 15205  NNcsquarenn 42817  Pell1234QRcpell1234qr 42819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-cnex 11130  ax-resscn 11131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-pell1234qr 42825
This theorem is referenced by:  elpell1234qr  42832
  Copyright terms: Public domain W3C validator