Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pell1234qrval | Structured version Visualization version GIF version |
Description: Value of the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
Ref | Expression |
---|---|
pell1234qrval | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6674 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (√‘𝑑) = (√‘𝐷)) | |
2 | 1 | oveq1d 7185 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → ((√‘𝑑) · 𝑤) = ((√‘𝐷) · 𝑤)) |
3 | 2 | oveq2d 7186 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑧 + ((√‘𝑑) · 𝑤)) = (𝑧 + ((√‘𝐷) · 𝑤))) |
4 | 3 | eqeq2d 2749 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ↔ 𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)))) |
5 | oveq1 7177 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝑑 · (𝑤↑2)) = (𝐷 · (𝑤↑2))) | |
6 | 5 | oveq2d 7186 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ((𝑧↑2) − (𝑑 · (𝑤↑2))) = ((𝑧↑2) − (𝐷 · (𝑤↑2)))) |
7 | 6 | eqeq1d 2740 | . . . . 5 ⊢ (𝑑 = 𝐷 → (((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1 ↔ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)) |
8 | 4, 7 | anbi12d 634 | . . . 4 ⊢ (𝑑 = 𝐷 → ((𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1) ↔ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
9 | 8 | 2rexbidv 3210 | . . 3 ⊢ (𝑑 = 𝐷 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
10 | 9 | rabbidv 3381 | . 2 ⊢ (𝑑 = 𝐷 → {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1)} = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
11 | df-pell1234qr 40238 | . 2 ⊢ Pell1234QR = (𝑑 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1)}) | |
12 | reex 10706 | . . 3 ⊢ ℝ ∈ V | |
13 | 12 | rabex 5200 | . 2 ⊢ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ∈ V |
14 | 10, 11, 13 | fvmpt 6775 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∃wrex 3054 {crab 3057 ∖ cdif 3840 ‘cfv 6339 (class class class)co 7170 ℝcr 10614 1c1 10616 + caddc 10618 · cmul 10620 − cmin 10948 ℕcn 11716 2c2 11771 ℤcz 12062 ↑cexp 13521 √csqrt 14682 ◻NNcsquarenn 40230 Pell1234QRcpell1234qr 40232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-cnex 10671 ax-resscn 10672 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6297 df-fun 6341 df-fv 6347 df-ov 7173 df-pell1234qr 40238 |
This theorem is referenced by: elpell1234qr 40245 |
Copyright terms: Public domain | W3C validator |