| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pell1234qrval | Structured version Visualization version GIF version | ||
| Description: Value of the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| Ref | Expression |
|---|---|
| pell1234qrval | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6886 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (√‘𝑑) = (√‘𝐷)) | |
| 2 | 1 | oveq1d 7428 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → ((√‘𝑑) · 𝑤) = ((√‘𝐷) · 𝑤)) |
| 3 | 2 | oveq2d 7429 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑧 + ((√‘𝑑) · 𝑤)) = (𝑧 + ((√‘𝐷) · 𝑤))) |
| 4 | 3 | eqeq2d 2745 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ↔ 𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)))) |
| 5 | oveq1 7420 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝑑 · (𝑤↑2)) = (𝐷 · (𝑤↑2))) | |
| 6 | 5 | oveq2d 7429 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ((𝑧↑2) − (𝑑 · (𝑤↑2))) = ((𝑧↑2) − (𝐷 · (𝑤↑2)))) |
| 7 | 6 | eqeq1d 2736 | . . . . 5 ⊢ (𝑑 = 𝐷 → (((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1 ↔ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)) |
| 8 | 4, 7 | anbi12d 632 | . . . 4 ⊢ (𝑑 = 𝐷 → ((𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1) ↔ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
| 9 | 8 | 2rexbidv 3209 | . . 3 ⊢ (𝑑 = 𝐷 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
| 10 | 9 | rabbidv 3427 | . 2 ⊢ (𝑑 = 𝐷 → {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1)} = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
| 11 | df-pell1234qr 42818 | . 2 ⊢ Pell1234QR = (𝑑 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1)}) | |
| 12 | reex 11228 | . . 3 ⊢ ℝ ∈ V | |
| 13 | 12 | rabex 5319 | . 2 ⊢ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ∈ V |
| 14 | 10, 11, 13 | fvmpt 6996 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {crab 3419 ∖ cdif 3928 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 1c1 11138 + caddc 11140 · cmul 11142 − cmin 11474 ℕcn 12248 2c2 12303 ℤcz 12596 ↑cexp 14084 √csqrt 15254 ◻NNcsquarenn 42810 Pell1234QRcpell1234qr 42812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-pell1234qr 42818 |
| This theorem is referenced by: elpell1234qr 42825 |
| Copyright terms: Public domain | W3C validator |