Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrval Structured version   Visualization version   GIF version

Theorem pell1234qrval 40672
Description: Value of the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1234qrval (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
Distinct variable group:   𝑦,𝑧,𝑤,𝐷

Proof of Theorem pell1234qrval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . . . . 8 (𝑑 = 𝐷 → (√‘𝑑) = (√‘𝐷))
21oveq1d 7290 . . . . . . 7 (𝑑 = 𝐷 → ((√‘𝑑) · 𝑤) = ((√‘𝐷) · 𝑤))
32oveq2d 7291 . . . . . 6 (𝑑 = 𝐷 → (𝑧 + ((√‘𝑑) · 𝑤)) = (𝑧 + ((√‘𝐷) · 𝑤)))
43eqeq2d 2749 . . . . 5 (𝑑 = 𝐷 → (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ↔ 𝑦 = (𝑧 + ((√‘𝐷) · 𝑤))))
5 oveq1 7282 . . . . . . 7 (𝑑 = 𝐷 → (𝑑 · (𝑤↑2)) = (𝐷 · (𝑤↑2)))
65oveq2d 7291 . . . . . 6 (𝑑 = 𝐷 → ((𝑧↑2) − (𝑑 · (𝑤↑2))) = ((𝑧↑2) − (𝐷 · (𝑤↑2))))
76eqeq1d 2740 . . . . 5 (𝑑 = 𝐷 → (((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1 ↔ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))
84, 7anbi12d 631 . . . 4 (𝑑 = 𝐷 → ((𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1) ↔ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
982rexbidv 3229 . . 3 (𝑑 = 𝐷 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
109rabbidv 3414 . 2 (𝑑 = 𝐷 → {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1)} = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
11 df-pell1234qr 40666 . 2 Pell1234QR = (𝑑 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑑) · 𝑤)) ∧ ((𝑧↑2) − (𝑑 · (𝑤↑2))) = 1)})
12 reex 10962 . . 3 ℝ ∈ V
1312rabex 5256 . 2 {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ∈ V
1410, 11, 13fvmpt 6875 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  cdif 3884  cfv 6433  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  cn 11973  2c2 12028  cz 12319  cexp 13782  csqrt 14944  NNcsquarenn 40658  Pell1234QRcpell1234qr 40660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-pell1234qr 40666
This theorem is referenced by:  elpell1234qr  40673
  Copyright terms: Public domain W3C validator