| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pell1qrval | Structured version Visualization version GIF version | ||
| Description: Value of the set of first-quadrant Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| Ref | Expression |
|---|---|
| pell1qrval | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑎 = 𝐷 → (√‘𝑎) = (√‘𝐷)) | |
| 2 | 1 | oveq1d 7402 | . . . . . . 7 ⊢ (𝑎 = 𝐷 → ((√‘𝑎) · 𝑤) = ((√‘𝐷) · 𝑤)) |
| 3 | 2 | oveq2d 7403 | . . . . . 6 ⊢ (𝑎 = 𝐷 → (𝑧 + ((√‘𝑎) · 𝑤)) = (𝑧 + ((√‘𝐷) · 𝑤))) |
| 4 | 3 | eqeq2d 2740 | . . . . 5 ⊢ (𝑎 = 𝐷 → (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ↔ 𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)))) |
| 5 | oveq1 7394 | . . . . . . 7 ⊢ (𝑎 = 𝐷 → (𝑎 · (𝑤↑2)) = (𝐷 · (𝑤↑2))) | |
| 6 | 5 | oveq2d 7403 | . . . . . 6 ⊢ (𝑎 = 𝐷 → ((𝑧↑2) − (𝑎 · (𝑤↑2))) = ((𝑧↑2) − (𝐷 · (𝑤↑2)))) |
| 7 | 6 | eqeq1d 2731 | . . . . 5 ⊢ (𝑎 = 𝐷 → (((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1 ↔ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)) |
| 8 | 4, 7 | anbi12d 632 | . . . 4 ⊢ (𝑎 = 𝐷 → ((𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1) ↔ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
| 9 | 8 | 2rexbidv 3202 | . . 3 ⊢ (𝑎 = 𝐷 → (∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
| 10 | 9 | rabbidv 3413 | . 2 ⊢ (𝑎 = 𝐷 → {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1)} = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
| 11 | df-pell1qr 42830 | . 2 ⊢ Pell1QR = (𝑎 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1)}) | |
| 12 | reex 11159 | . . 3 ⊢ ℝ ∈ V | |
| 13 | 12 | rabex 5294 | . 2 ⊢ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ∈ V |
| 14 | 10, 11, 13 | fvmpt 6968 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 ∖ cdif 3911 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ↑cexp 14026 √csqrt 15199 ◻NNcsquarenn 42824 Pell1QRcpell1qr 42825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-pell1qr 42830 |
| This theorem is referenced by: elpell1qr 42835 |
| Copyright terms: Public domain | W3C validator |