Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrval Structured version   Visualization version   GIF version

Theorem pell1qrval 42834
Description: Value of the set of first-quadrant Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1qrval (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
Distinct variable group:   𝑦,𝑧,𝑤,𝐷

Proof of Theorem pell1qrval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . . . 8 (𝑎 = 𝐷 → (√‘𝑎) = (√‘𝐷))
21oveq1d 7402 . . . . . . 7 (𝑎 = 𝐷 → ((√‘𝑎) · 𝑤) = ((√‘𝐷) · 𝑤))
32oveq2d 7403 . . . . . 6 (𝑎 = 𝐷 → (𝑧 + ((√‘𝑎) · 𝑤)) = (𝑧 + ((√‘𝐷) · 𝑤)))
43eqeq2d 2740 . . . . 5 (𝑎 = 𝐷 → (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ↔ 𝑦 = (𝑧 + ((√‘𝐷) · 𝑤))))
5 oveq1 7394 . . . . . . 7 (𝑎 = 𝐷 → (𝑎 · (𝑤↑2)) = (𝐷 · (𝑤↑2)))
65oveq2d 7403 . . . . . 6 (𝑎 = 𝐷 → ((𝑧↑2) − (𝑎 · (𝑤↑2))) = ((𝑧↑2) − (𝐷 · (𝑤↑2))))
76eqeq1d 2731 . . . . 5 (𝑎 = 𝐷 → (((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1 ↔ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))
84, 7anbi12d 632 . . . 4 (𝑎 = 𝐷 → ((𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1) ↔ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
982rexbidv 3202 . . 3 (𝑎 = 𝐷 → (∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
109rabbidv 3413 . 2 (𝑎 = 𝐷 → {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1)} = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
11 df-pell1qr 42830 . 2 Pell1QR = (𝑎 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1)})
12 reex 11159 . . 3 ℝ ∈ V
1312rabex 5294 . 2 {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ∈ V
1410, 11, 13fvmpt 6968 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  cdif 3911  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cexp 14026  csqrt 15199  NNcsquarenn 42824  Pell1QRcpell1qr 42825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-pell1qr 42830
This theorem is referenced by:  elpell1qr  42835
  Copyright terms: Public domain W3C validator