Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrval Structured version   Visualization version   GIF version

Theorem pell1qrval 40676
Description: Value of the set of first-quadrant Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1qrval (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
Distinct variable group:   𝑦,𝑧,𝑤,𝐷

Proof of Theorem pell1qrval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6766 . . . . . . . 8 (𝑎 = 𝐷 → (√‘𝑎) = (√‘𝐷))
21oveq1d 7282 . . . . . . 7 (𝑎 = 𝐷 → ((√‘𝑎) · 𝑤) = ((√‘𝐷) · 𝑤))
32oveq2d 7283 . . . . . 6 (𝑎 = 𝐷 → (𝑧 + ((√‘𝑎) · 𝑤)) = (𝑧 + ((√‘𝐷) · 𝑤)))
43eqeq2d 2749 . . . . 5 (𝑎 = 𝐷 → (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ↔ 𝑦 = (𝑧 + ((√‘𝐷) · 𝑤))))
5 oveq1 7274 . . . . . . 7 (𝑎 = 𝐷 → (𝑎 · (𝑤↑2)) = (𝐷 · (𝑤↑2)))
65oveq2d 7283 . . . . . 6 (𝑎 = 𝐷 → ((𝑧↑2) − (𝑎 · (𝑤↑2))) = ((𝑧↑2) − (𝐷 · (𝑤↑2))))
76eqeq1d 2740 . . . . 5 (𝑎 = 𝐷 → (((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1 ↔ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))
84, 7anbi12d 631 . . . 4 (𝑎 = 𝐷 → ((𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1) ↔ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
982rexbidv 3227 . . 3 (𝑎 = 𝐷 → (∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
109rabbidv 3411 . 2 (𝑎 = 𝐷 → {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1)} = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
11 df-pell1qr 40672 . 2 Pell1QR = (𝑎 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1)})
12 reex 10972 . . 3 ℝ ∈ V
1312rabex 5254 . 2 {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ∈ V
1410, 11, 13fvmpt 6867 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  cdif 3883  cfv 6426  (class class class)co 7267  cr 10880  1c1 10882   + caddc 10884   · cmul 10886  cmin 11215  cn 11983  2c2 12038  0cn0 12243  cexp 13792  csqrt 14954  NNcsquarenn 40666  Pell1QRcpell1qr 40667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-cnex 10937  ax-resscn 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-iota 6384  df-fun 6428  df-fv 6434  df-ov 7270  df-pell1qr 40672
This theorem is referenced by:  elpell1qr  40677
  Copyright terms: Public domain W3C validator