| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundval | Structured version Visualization version GIF version | ||
| Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
| Ref | Expression |
|---|---|
| pellfundval | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . 4 ⊢ (𝑎 = 𝐷 → (Pell14QR‘𝑎) = (Pell14QR‘𝐷)) | |
| 2 | rabeq 3411 | . . . 4 ⊢ ((Pell14QR‘𝑎) = (Pell14QR‘𝐷) → {𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥} = {𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑎 = 𝐷 → {𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥} = {𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}) |
| 4 | 3 | infeq1d 9387 | . 2 ⊢ (𝑎 = 𝐷 → inf({𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥}, ℝ, < ) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) |
| 5 | df-pellfund 42818 | . 2 ⊢ PellFund = (𝑎 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥}, ℝ, < )) | |
| 6 | ltso 11214 | . . 3 ⊢ < Or ℝ | |
| 7 | 6 | infex 9404 | . 2 ⊢ inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ) ∈ V |
| 8 | 4, 5, 7 | fvmpt 6934 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3396 ∖ cdif 3902 class class class wbr 5095 ‘cfv 6486 infcinf 9350 ℝcr 11027 1c1 11029 < clt 11168 ℕcn 12146 ◻NNcsquarenn 42809 Pell14QRcpell14qr 42812 PellFundcpellfund 42813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-pellfund 42818 |
| This theorem is referenced by: pellfundre 42854 pellfundge 42855 pellfundlb 42857 pellfundglb 42858 |
| Copyright terms: Public domain | W3C validator |