Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundval Structured version   Visualization version   GIF version

Theorem pellfundval 42364
Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.)
Assertion
Ref Expression
pellfundval (𝐷 ∈ (β„• βˆ– β—»NN) β†’ (PellFundβ€˜π·) = inf({π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯}, ℝ, < ))
Distinct variable group:   π‘₯,𝐷

Proof of Theorem pellfundval
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . 4 (π‘Ž = 𝐷 β†’ (Pell14QRβ€˜π‘Ž) = (Pell14QRβ€˜π·))
2 rabeq 3434 . . . 4 ((Pell14QRβ€˜π‘Ž) = (Pell14QRβ€˜π·) β†’ {π‘₯ ∈ (Pell14QRβ€˜π‘Ž) ∣ 1 < π‘₯} = {π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯})
31, 2syl 17 . . 3 (π‘Ž = 𝐷 β†’ {π‘₯ ∈ (Pell14QRβ€˜π‘Ž) ∣ 1 < π‘₯} = {π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯})
43infeq1d 9498 . 2 (π‘Ž = 𝐷 β†’ inf({π‘₯ ∈ (Pell14QRβ€˜π‘Ž) ∣ 1 < π‘₯}, ℝ, < ) = inf({π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯}, ℝ, < ))
5 df-pellfund 42329 . 2 PellFund = (π‘Ž ∈ (β„• βˆ– β—»NN) ↦ inf({π‘₯ ∈ (Pell14QRβ€˜π‘Ž) ∣ 1 < π‘₯}, ℝ, < ))
6 ltso 11322 . . 3 < Or ℝ
76infex 9514 . 2 inf({π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯}, ℝ, < ) ∈ V
84, 5, 7fvmpt 6999 1 (𝐷 ∈ (β„• βˆ– β—»NN) β†’ (PellFundβ€˜π·) = inf({π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {crab 3419   βˆ– cdif 3937   class class class wbr 5143  β€˜cfv 6542  infcinf 9462  β„cr 11135  1c1 11137   < clt 11276  β„•cn 12240  β—»NNcsquarenn 42320  Pell14QRcpell14qr 42323  PellFundcpellfund 42324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-resscn 11193  ax-pre-lttri 11210  ax-pre-lttrn 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-ltxr 11281  df-pellfund 42329
This theorem is referenced by:  pellfundre  42365  pellfundge  42366  pellfundlb  42368  pellfundglb  42369
  Copyright terms: Public domain W3C validator