Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundval Structured version   Visualization version   GIF version

Theorem pellfundval 40618
Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.)
Assertion
Ref Expression
pellfundval (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ))
Distinct variable group:   𝑥,𝐷

Proof of Theorem pellfundval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . 4 (𝑎 = 𝐷 → (Pell14QR‘𝑎) = (Pell14QR‘𝐷))
2 rabeq 3408 . . . 4 ((Pell14QR‘𝑎) = (Pell14QR‘𝐷) → {𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥} = {𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥})
31, 2syl 17 . . 3 (𝑎 = 𝐷 → {𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥} = {𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥})
43infeq1d 9166 . 2 (𝑎 = 𝐷 → inf({𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥}, ℝ, < ) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ))
5 df-pellfund 40583 . 2 PellFund = (𝑎 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥}, ℝ, < ))
6 ltso 10986 . . 3 < Or ℝ
76infex 9182 . 2 inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ) ∈ V
84, 5, 7fvmpt 6857 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  cdif 3880   class class class wbr 5070  cfv 6418  infcinf 9130  cr 10801  1c1 10803   < clt 10940  cn 11903  NNcsquarenn 40574  Pell14QRcpell14qr 40577  PellFundcpellfund 40578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-pellfund 40583
This theorem is referenced by:  pellfundre  40619  pellfundge  40620  pellfundlb  40622  pellfundglb  40623
  Copyright terms: Public domain W3C validator