![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundval | Structured version Visualization version GIF version |
Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
Ref | Expression |
---|---|
pellfundval | β’ (π· β (β β β»NN) β (PellFundβπ·) = inf({π₯ β (Pell14QRβπ·) β£ 1 < π₯}, β, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6885 | . . . 4 β’ (π = π· β (Pell14QRβπ) = (Pell14QRβπ·)) | |
2 | rabeq 3440 | . . . 4 β’ ((Pell14QRβπ) = (Pell14QRβπ·) β {π₯ β (Pell14QRβπ) β£ 1 < π₯} = {π₯ β (Pell14QRβπ·) β£ 1 < π₯}) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π = π· β {π₯ β (Pell14QRβπ) β£ 1 < π₯} = {π₯ β (Pell14QRβπ·) β£ 1 < π₯}) |
4 | 3 | infeq1d 9474 | . 2 β’ (π = π· β inf({π₯ β (Pell14QRβπ) β£ 1 < π₯}, β, < ) = inf({π₯ β (Pell14QRβπ·) β£ 1 < π₯}, β, < )) |
5 | df-pellfund 42166 | . 2 β’ PellFund = (π β (β β β»NN) β¦ inf({π₯ β (Pell14QRβπ) β£ 1 < π₯}, β, < )) | |
6 | ltso 11298 | . . 3 β’ < Or β | |
7 | 6 | infex 9490 | . 2 β’ inf({π₯ β (Pell14QRβπ·) β£ 1 < π₯}, β, < ) β V |
8 | 4, 5, 7 | fvmpt 6992 | 1 β’ (π· β (β β β»NN) β (PellFundβπ·) = inf({π₯ β (Pell14QRβπ·) β£ 1 < π₯}, β, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3426 β cdif 3940 class class class wbr 5141 βcfv 6537 infcinf 9438 βcr 11111 1c1 11113 < clt 11252 βcn 12216 β»NNcsquarenn 42157 Pell14QRcpell14qr 42160 PellFundcpellfund 42161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-pellfund 42166 |
This theorem is referenced by: pellfundre 42202 pellfundge 42203 pellfundlb 42205 pellfundglb 42206 |
Copyright terms: Public domain | W3C validator |