Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundval Structured version   Visualization version   GIF version

Theorem pellfundval 39616
 Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.)
Assertion
Ref Expression
pellfundval (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ))
Distinct variable group:   𝑥,𝐷

Proof of Theorem pellfundval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6643 . . . 4 (𝑎 = 𝐷 → (Pell14QR‘𝑎) = (Pell14QR‘𝐷))
2 rabeq 3460 . . . 4 ((Pell14QR‘𝑎) = (Pell14QR‘𝐷) → {𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥} = {𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥})
31, 2syl 17 . . 3 (𝑎 = 𝐷 → {𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥} = {𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥})
43infeq1d 8917 . 2 (𝑎 = 𝐷 → inf({𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥}, ℝ, < ) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ))
5 df-pellfund 39581 . 2 PellFund = (𝑎 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥}, ℝ, < ))
6 ltso 10698 . . 3 < Or ℝ
76infex 8933 . 2 inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ) ∈ V
84, 5, 7fvmpt 6741 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  {crab 3130   ∖ cdif 3907   class class class wbr 5039  ‘cfv 6328  infcinf 8881  ℝcr 10513  1c1 10515   < clt 10652  ℕcn 11615  ◻NNcsquarenn 39572  Pell14QRcpell14qr 39575  PellFundcpellfund 39576 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-resscn 10571  ax-pre-lttri 10588  ax-pre-lttrn 10589 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-ltxr 10657  df-pellfund 39581 This theorem is referenced by:  pellfundre  39617  pellfundge  39618  pellfundlb  39620  pellfundglb  39621
 Copyright terms: Public domain W3C validator