![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundval | Structured version Visualization version GIF version |
Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
Ref | Expression |
---|---|
pellfundval | β’ (π· β (β β β»NN) β (PellFundβπ·) = inf({π₯ β (Pell14QRβπ·) β£ 1 < π₯}, β, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . 4 β’ (π = π· β (Pell14QRβπ) = (Pell14QRβπ·)) | |
2 | rabeq 3434 | . . . 4 β’ ((Pell14QRβπ) = (Pell14QRβπ·) β {π₯ β (Pell14QRβπ) β£ 1 < π₯} = {π₯ β (Pell14QRβπ·) β£ 1 < π₯}) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π = π· β {π₯ β (Pell14QRβπ) β£ 1 < π₯} = {π₯ β (Pell14QRβπ·) β£ 1 < π₯}) |
4 | 3 | infeq1d 9498 | . 2 β’ (π = π· β inf({π₯ β (Pell14QRβπ) β£ 1 < π₯}, β, < ) = inf({π₯ β (Pell14QRβπ·) β£ 1 < π₯}, β, < )) |
5 | df-pellfund 42329 | . 2 β’ PellFund = (π β (β β β»NN) β¦ inf({π₯ β (Pell14QRβπ) β£ 1 < π₯}, β, < )) | |
6 | ltso 11322 | . . 3 β’ < Or β | |
7 | 6 | infex 9514 | . 2 β’ inf({π₯ β (Pell14QRβπ·) β£ 1 < π₯}, β, < ) β V |
8 | 4, 5, 7 | fvmpt 6999 | 1 β’ (π· β (β β β»NN) β (PellFundβπ·) = inf({π₯ β (Pell14QRβπ·) β£ 1 < π₯}, β, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3419 β cdif 3937 class class class wbr 5143 βcfv 6542 infcinf 9462 βcr 11135 1c1 11137 < clt 11276 βcn 12240 β»NNcsquarenn 42320 Pell14QRcpell14qr 42323 PellFundcpellfund 42324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-resscn 11193 ax-pre-lttri 11210 ax-pre-lttrn 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-ltxr 11281 df-pellfund 42329 |
This theorem is referenced by: pellfundre 42365 pellfundge 42366 pellfundlb 42368 pellfundglb 42369 |
Copyright terms: Public domain | W3C validator |