Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundval | Structured version Visualization version GIF version |
Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
Ref | Expression |
---|---|
pellfundval | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . 4 ⊢ (𝑎 = 𝐷 → (Pell14QR‘𝑎) = (Pell14QR‘𝐷)) | |
2 | rabeq 3408 | . . . 4 ⊢ ((Pell14QR‘𝑎) = (Pell14QR‘𝐷) → {𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥} = {𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑎 = 𝐷 → {𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥} = {𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}) |
4 | 3 | infeq1d 9166 | . 2 ⊢ (𝑎 = 𝐷 → inf({𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥}, ℝ, < ) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) |
5 | df-pellfund 40583 | . 2 ⊢ PellFund = (𝑎 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥}, ℝ, < )) | |
6 | ltso 10986 | . . 3 ⊢ < Or ℝ | |
7 | 6 | infex 9182 | . 2 ⊢ inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ) ∈ V |
8 | 4, 5, 7 | fvmpt 6857 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 class class class wbr 5070 ‘cfv 6418 infcinf 9130 ℝcr 10801 1c1 10803 < clt 10940 ℕcn 11903 ◻NNcsquarenn 40574 Pell14QRcpell14qr 40577 PellFundcpellfund 40578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-pellfund 40583 |
This theorem is referenced by: pellfundre 40619 pellfundge 40620 pellfundlb 40622 pellfundglb 40623 |
Copyright terms: Public domain | W3C validator |