Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundval Structured version   Visualization version   GIF version

Theorem pellfundval 42201
Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.)
Assertion
Ref Expression
pellfundval (𝐷 ∈ (β„• βˆ– β—»NN) β†’ (PellFundβ€˜π·) = inf({π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯}, ℝ, < ))
Distinct variable group:   π‘₯,𝐷

Proof of Theorem pellfundval
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 fveq2 6885 . . . 4 (π‘Ž = 𝐷 β†’ (Pell14QRβ€˜π‘Ž) = (Pell14QRβ€˜π·))
2 rabeq 3440 . . . 4 ((Pell14QRβ€˜π‘Ž) = (Pell14QRβ€˜π·) β†’ {π‘₯ ∈ (Pell14QRβ€˜π‘Ž) ∣ 1 < π‘₯} = {π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯})
31, 2syl 17 . . 3 (π‘Ž = 𝐷 β†’ {π‘₯ ∈ (Pell14QRβ€˜π‘Ž) ∣ 1 < π‘₯} = {π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯})
43infeq1d 9474 . 2 (π‘Ž = 𝐷 β†’ inf({π‘₯ ∈ (Pell14QRβ€˜π‘Ž) ∣ 1 < π‘₯}, ℝ, < ) = inf({π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯}, ℝ, < ))
5 df-pellfund 42166 . 2 PellFund = (π‘Ž ∈ (β„• βˆ– β—»NN) ↦ inf({π‘₯ ∈ (Pell14QRβ€˜π‘Ž) ∣ 1 < π‘₯}, ℝ, < ))
6 ltso 11298 . . 3 < Or ℝ
76infex 9490 . 2 inf({π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯}, ℝ, < ) ∈ V
84, 5, 7fvmpt 6992 1 (𝐷 ∈ (β„• βˆ– β—»NN) β†’ (PellFundβ€˜π·) = inf({π‘₯ ∈ (Pell14QRβ€˜π·) ∣ 1 < π‘₯}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {crab 3426   βˆ– cdif 3940   class class class wbr 5141  β€˜cfv 6537  infcinf 9438  β„cr 11111  1c1 11113   < clt 11252  β„•cn 12216  β—»NNcsquarenn 42157  Pell14QRcpell14qr 42160  PellFundcpellfund 42161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-pellfund 42166
This theorem is referenced by:  pellfundre  42202  pellfundge  42203  pellfundlb  42205  pellfundglb  42206
  Copyright terms: Public domain W3C validator