| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-perf | Structured version Visualization version GIF version | ||
| Description: Define the class of all perfect spaces. A perfect space is one for which every point in the set is a limit point of the whole space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| df-perf | ⊢ Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cperf 23143 | . 2 class Perf | |
| 2 | vj | . . . . . . 7 setvar 𝑗 | |
| 3 | 2 | cv 1539 | . . . . . 6 class 𝑗 |
| 4 | 3 | cuni 4907 | . . . . 5 class ∪ 𝑗 |
| 5 | clp 23142 | . . . . . 6 class limPt | |
| 6 | 3, 5 | cfv 6561 | . . . . 5 class (limPt‘𝑗) |
| 7 | 4, 6 | cfv 6561 | . . . 4 class ((limPt‘𝑗)‘∪ 𝑗) |
| 8 | 7, 4 | wceq 1540 | . . 3 wff ((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗 |
| 9 | ctop 22899 | . . 3 class Top | |
| 10 | 8, 2, 9 | crab 3436 | . 2 class {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗} |
| 11 | 1, 10 | wceq 1540 | 1 wff Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isperf 23159 |
| Copyright terms: Public domain | W3C validator |