MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpfval Structured version   Visualization version   GIF version

Theorem lpfval 23025
Description: The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpfval (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦

Proof of Theorem lpfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21topopn 22793 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 5333 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 mptexg 7195 . . 3 (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V)
6 unieq 4882 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1eqtr4di 2782 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4580 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
9 fveq2 6858 . . . . . . 7 (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽))
109fveq1d 6860 . . . . . 6 (𝑗 = 𝐽 → ((cls‘𝑗)‘(𝑥 ∖ {𝑦})) = ((cls‘𝐽)‘(𝑥 ∖ {𝑦})))
1110eleq2d 2814 . . . . 5 (𝑗 = 𝐽 → (𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦})) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))))
1211abbidv 2795 . . . 4 (𝑗 = 𝐽 → {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))} = {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})
138, 12mpteq12dv 5194 . . 3 (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
14 df-lp 23023 . . 3 limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
1513, 14fvmptg 6966 . 2 ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V) → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
165, 15mpdan 687 1 (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  cdif 3911  𝒫 cpw 4563  {csn 4589   cuni 4871  cmpt 5188  cfv 6511  Topctop 22780  clsccl 22905  limPtclp 23021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-lp 23023
This theorem is referenced by:  lpval  23026
  Copyright terms: Public domain W3C validator