MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpfval Structured version   Visualization version   GIF version

Theorem lpfval 21722
Description: The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpfval (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦

Proof of Theorem lpfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21topopn 21490 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 5252 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 mptexg 6957 . . 3 (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V)
6 unieq 4822 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1syl6eqr 2874 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4531 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
9 fveq2 6643 . . . . . . 7 (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽))
109fveq1d 6645 . . . . . 6 (𝑗 = 𝐽 → ((cls‘𝑗)‘(𝑥 ∖ {𝑦})) = ((cls‘𝐽)‘(𝑥 ∖ {𝑦})))
1110eleq2d 2897 . . . . 5 (𝑗 = 𝐽 → (𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦})) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))))
1211abbidv 2885 . . . 4 (𝑗 = 𝐽 → {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))} = {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})
138, 12mpteq12dv 5124 . . 3 (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
14 df-lp 21720 . . 3 limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
1513, 14fvmptg 6739 . 2 ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V) → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
165, 15mpdan 686 1 (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  {cab 2799  Vcvv 3471  cdif 3907  𝒫 cpw 4512  {csn 4540   cuni 4811  cmpt 5119  cfv 6328  Topctop 21477  clsccl 21602  limPtclp 21718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-top 21478  df-lp 21720
This theorem is referenced by:  lpval  21723
  Copyright terms: Public domain W3C validator