MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpfval Structured version   Visualization version   GIF version

Theorem lpfval 23167
Description: The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpfval (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦

Proof of Theorem lpfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21topopn 22933 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 5396 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 mptexg 7258 . . 3 (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V)
6 unieq 4942 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1eqtr4di 2798 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4639 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
9 fveq2 6920 . . . . . . 7 (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽))
109fveq1d 6922 . . . . . 6 (𝑗 = 𝐽 → ((cls‘𝑗)‘(𝑥 ∖ {𝑦})) = ((cls‘𝐽)‘(𝑥 ∖ {𝑦})))
1110eleq2d 2830 . . . . 5 (𝑗 = 𝐽 → (𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦})) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))))
1211abbidv 2811 . . . 4 (𝑗 = 𝐽 → {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))} = {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})
138, 12mpteq12dv 5257 . . 3 (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
14 df-lp 23165 . . 3 limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
1513, 14fvmptg 7027 . 2 ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V) → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
165, 15mpdan 686 1 (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  cdif 3973  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  cfv 6573  Topctop 22920  clsccl 23047  limPtclp 23163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-lp 23165
This theorem is referenced by:  lpval  23168
  Copyright terms: Public domain W3C validator