MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpfval Structured version   Visualization version   GIF version

Theorem lpfval 22633
Description: The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
lpfval (𝐽 ∈ Top β†’ (limPtβ€˜π½) = (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π½)β€˜(π‘₯ βˆ– {𝑦}))}))
Distinct variable groups:   π‘₯,𝑦,𝐽   π‘₯,𝑋,𝑦

Proof of Theorem lpfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = βˆͺ 𝐽
21topopn 22399 . . 3 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
3 pwexg 5375 . . 3 (𝑋 ∈ 𝐽 β†’ 𝒫 𝑋 ∈ V)
4 mptexg 7219 . . 3 (𝒫 𝑋 ∈ V β†’ (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π½)β€˜(π‘₯ βˆ– {𝑦}))}) ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top β†’ (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π½)β€˜(π‘₯ βˆ– {𝑦}))}) ∈ V)
6 unieq 4918 . . . . . 6 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
76, 1eqtr4di 2790 . . . . 5 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = 𝑋)
87pweqd 4618 . . . 4 (𝑗 = 𝐽 β†’ 𝒫 βˆͺ 𝑗 = 𝒫 𝑋)
9 fveq2 6888 . . . . . . 7 (𝑗 = 𝐽 β†’ (clsβ€˜π‘—) = (clsβ€˜π½))
109fveq1d 6890 . . . . . 6 (𝑗 = 𝐽 β†’ ((clsβ€˜π‘—)β€˜(π‘₯ βˆ– {𝑦})) = ((clsβ€˜π½)β€˜(π‘₯ βˆ– {𝑦})))
1110eleq2d 2819 . . . . 5 (𝑗 = 𝐽 β†’ (𝑦 ∈ ((clsβ€˜π‘—)β€˜(π‘₯ βˆ– {𝑦})) ↔ 𝑦 ∈ ((clsβ€˜π½)β€˜(π‘₯ βˆ– {𝑦}))))
1211abbidv 2801 . . . 4 (𝑗 = 𝐽 β†’ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π‘—)β€˜(π‘₯ βˆ– {𝑦}))} = {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π½)β€˜(π‘₯ βˆ– {𝑦}))})
138, 12mpteq12dv 5238 . . 3 (𝑗 = 𝐽 β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π‘—)β€˜(π‘₯ βˆ– {𝑦}))}) = (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π½)β€˜(π‘₯ βˆ– {𝑦}))}))
14 df-lp 22631 . . 3 limPt = (𝑗 ∈ Top ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π‘—)β€˜(π‘₯ βˆ– {𝑦}))}))
1513, 14fvmptg 6993 . 2 ((𝐽 ∈ Top ∧ (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π½)β€˜(π‘₯ βˆ– {𝑦}))}) ∈ V) β†’ (limPtβ€˜π½) = (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π½)β€˜(π‘₯ βˆ– {𝑦}))}))
165, 15mpdan 685 1 (𝐽 ∈ Top β†’ (limPtβ€˜π½) = (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π½)β€˜(π‘₯ βˆ– {𝑦}))}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {cab 2709  Vcvv 3474   βˆ– cdif 3944  π’« cpw 4601  {csn 4627  βˆͺ cuni 4907   ↦ cmpt 5230  β€˜cfv 6540  Topctop 22386  clsccl 22513  limPtclp 22629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-top 22387  df-lp 22631
This theorem is referenced by:  lpval  22634
  Copyright terms: Public domain W3C validator