| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lpfval | Structured version Visualization version GIF version | ||
| Description: The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| lpfval | ⊢ (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn 22800 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 3 | pwexg 5336 | . . 3 ⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) | |
| 4 | mptexg 7198 | . . 3 ⊢ (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V) |
| 6 | unieq 4885 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 7 | 6, 1 | eqtr4di 2783 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
| 8 | 7 | pweqd 4583 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
| 9 | fveq2 6861 | . . . . . . 7 ⊢ (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽)) | |
| 10 | 9 | fveq1d 6863 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ((cls‘𝑗)‘(𝑥 ∖ {𝑦})) = ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))) |
| 11 | 10 | eleq2d 2815 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦})) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦})))) |
| 12 | 11 | abbidv 2796 | . . . 4 ⊢ (𝑗 = 𝐽 → {𝑦 ∣ 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))} = {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) |
| 13 | 8, 12 | mpteq12dv 5197 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})) |
| 14 | df-lp 23030 | . . 3 ⊢ limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))})) | |
| 15 | 13, 14 | fvmptg 6969 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V) → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})) |
| 16 | 5, 15 | mpdan 687 | 1 ⊢ (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 ∖ cdif 3914 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 ↦ cmpt 5191 ‘cfv 6514 Topctop 22787 clsccl 22912 limPtclp 23028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-top 22788 df-lp 23030 |
| This theorem is referenced by: lpval 23033 |
| Copyright terms: Public domain | W3C validator |