![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lpfval | Structured version Visualization version GIF version |
Description: The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
lpfval | ⊢ (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 22933 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | pwexg 5396 | . . 3 ⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) | |
4 | mptexg 7258 | . . 3 ⊢ (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V) |
6 | unieq 4942 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
7 | 6, 1 | eqtr4di 2798 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
8 | 7 | pweqd 4639 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
9 | fveq2 6920 | . . . . . . 7 ⊢ (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽)) | |
10 | 9 | fveq1d 6922 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ((cls‘𝑗)‘(𝑥 ∖ {𝑦})) = ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))) |
11 | 10 | eleq2d 2830 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦})) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦})))) |
12 | 11 | abbidv 2811 | . . . 4 ⊢ (𝑗 = 𝐽 → {𝑦 ∣ 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))} = {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) |
13 | 8, 12 | mpteq12dv 5257 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})) |
14 | df-lp 23165 | . . 3 ⊢ limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))})) | |
15 | 13, 14 | fvmptg 7027 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}) ∈ V) → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})) |
16 | 5, 15 | mpdan 686 | 1 ⊢ (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 ∖ cdif 3973 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 ‘cfv 6573 Topctop 22920 clsccl 23047 limPtclp 23163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-lp 23165 |
This theorem is referenced by: lpval 23168 |
Copyright terms: Public domain | W3C validator |