Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isperf | Structured version Visualization version GIF version |
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isperf | ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . 4 ⊢ (𝑗 = 𝐽 → (limPt‘𝑗) = (limPt‘𝐽)) | |
2 | unieq 4847 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
3 | lpfval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | eqtr4di 2797 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
5 | 1, 4 | fveq12d 6763 | . . 3 ⊢ (𝑗 = 𝐽 → ((limPt‘𝑗)‘∪ 𝑗) = ((limPt‘𝐽)‘𝑋)) |
6 | 5, 4 | eqeq12d 2754 | . 2 ⊢ (𝑗 = 𝐽 → (((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗 ↔ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
7 | df-perf 22196 | . 2 ⊢ Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗} | |
8 | 6, 7 | elrab2 3620 | 1 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 limPtclp 22193 Perfcperf 22194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-perf 22196 |
This theorem is referenced by: isperf2 22211 perflp 22213 perftop 22215 restperf 22243 |
Copyright terms: Public domain | W3C validator |