MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf Structured version   Visualization version   GIF version

Theorem isperf 22210
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
isperf (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋))

Proof of Theorem isperf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . 4 (𝑗 = 𝐽 → (limPt‘𝑗) = (limPt‘𝐽))
2 unieq 4847 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
3 lpfval.1 . . . . 5 𝑋 = 𝐽
42, 3eqtr4di 2797 . . . 4 (𝑗 = 𝐽 𝑗 = 𝑋)
51, 4fveq12d 6763 . . 3 (𝑗 = 𝐽 → ((limPt‘𝑗)‘ 𝑗) = ((limPt‘𝐽)‘𝑋))
65, 4eqeq12d 2754 . 2 (𝑗 = 𝐽 → (((limPt‘𝑗)‘ 𝑗) = 𝑗 ↔ ((limPt‘𝐽)‘𝑋) = 𝑋))
7 df-perf 22196 . 2 Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘ 𝑗) = 𝑗}
86, 7elrab2 3620 1 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108   cuni 4836  cfv 6418  Topctop 21950  limPtclp 22193  Perfcperf 22194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-perf 22196
This theorem is referenced by:  isperf2  22211  perflp  22213  perftop  22215  restperf  22243
  Copyright terms: Public domain W3C validator