MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf Structured version   Visualization version   GIF version

Theorem isperf 23087
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
isperf (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋))

Proof of Theorem isperf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6875 . . . 4 (𝑗 = 𝐽 → (limPt‘𝑗) = (limPt‘𝐽))
2 unieq 4894 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
3 lpfval.1 . . . . 5 𝑋 = 𝐽
42, 3eqtr4di 2788 . . . 4 (𝑗 = 𝐽 𝑗 = 𝑋)
51, 4fveq12d 6882 . . 3 (𝑗 = 𝐽 → ((limPt‘𝑗)‘ 𝑗) = ((limPt‘𝐽)‘𝑋))
65, 4eqeq12d 2751 . 2 (𝑗 = 𝐽 → (((limPt‘𝑗)‘ 𝑗) = 𝑗 ↔ ((limPt‘𝐽)‘𝑋) = 𝑋))
7 df-perf 23073 . 2 Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘ 𝑗) = 𝑗}
86, 7elrab2 3674 1 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108   cuni 4883  cfv 6530  Topctop 22829  limPtclp 23070  Perfcperf 23071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-perf 23073
This theorem is referenced by:  isperf2  23088  perflp  23090  perftop  23092  restperf  23120
  Copyright terms: Public domain W3C validator