Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isperf | Structured version Visualization version GIF version |
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isperf | ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . 4 ⊢ (𝑗 = 𝐽 → (limPt‘𝑗) = (limPt‘𝐽)) | |
2 | unieq 4850 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
3 | lpfval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | eqtr4di 2796 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
5 | 1, 4 | fveq12d 6781 | . . 3 ⊢ (𝑗 = 𝐽 → ((limPt‘𝑗)‘∪ 𝑗) = ((limPt‘𝐽)‘𝑋)) |
6 | 5, 4 | eqeq12d 2754 | . 2 ⊢ (𝑗 = 𝐽 → (((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗 ↔ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
7 | df-perf 22288 | . 2 ⊢ Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗} | |
8 | 6, 7 | elrab2 3627 | 1 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 limPtclp 22285 Perfcperf 22286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-perf 22288 |
This theorem is referenced by: isperf2 22303 perflp 22305 perftop 22307 restperf 22335 |
Copyright terms: Public domain | W3C validator |