![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isperf | Structured version Visualization version GIF version |
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isperf | ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑗 = 𝐽 → (limPt‘𝑗) = (limPt‘𝐽)) | |
2 | unieq 4942 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
3 | lpfval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | eqtr4di 2798 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
5 | 1, 4 | fveq12d 6927 | . . 3 ⊢ (𝑗 = 𝐽 → ((limPt‘𝑗)‘∪ 𝑗) = ((limPt‘𝐽)‘𝑋)) |
6 | 5, 4 | eqeq12d 2756 | . 2 ⊢ (𝑗 = 𝐽 → (((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗 ↔ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
7 | df-perf 23166 | . 2 ⊢ Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗} | |
8 | 6, 7 | elrab2 3711 | 1 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 limPtclp 23163 Perfcperf 23164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-perf 23166 |
This theorem is referenced by: isperf2 23181 perflp 23183 perftop 23185 restperf 23213 |
Copyright terms: Public domain | W3C validator |