![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isperf | Structured version Visualization version GIF version |
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
isperf | β’ (π½ β Perf β (π½ β Top β§ ((limPtβπ½)βπ) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . 4 β’ (π = π½ β (limPtβπ) = (limPtβπ½)) | |
2 | unieq 4918 | . . . . 5 β’ (π = π½ β βͺ π = βͺ π½) | |
3 | lpfval.1 | . . . . 5 β’ π = βͺ π½ | |
4 | 2, 3 | eqtr4di 2790 | . . . 4 β’ (π = π½ β βͺ π = π) |
5 | 1, 4 | fveq12d 6895 | . . 3 β’ (π = π½ β ((limPtβπ)ββͺ π) = ((limPtβπ½)βπ)) |
6 | 5, 4 | eqeq12d 2748 | . 2 β’ (π = π½ β (((limPtβπ)ββͺ π) = βͺ π β ((limPtβπ½)βπ) = π)) |
7 | df-perf 22632 | . 2 β’ Perf = {π β Top β£ ((limPtβπ)ββͺ π) = βͺ π} | |
8 | 6, 7 | elrab2 3685 | 1 β’ (π½ β Perf β (π½ β Top β§ ((limPtβπ½)βπ) = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βͺ cuni 4907 βcfv 6540 Topctop 22386 limPtclp 22629 Perfcperf 22630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-perf 22632 |
This theorem is referenced by: isperf2 22647 perflp 22649 perftop 22651 restperf 22679 |
Copyright terms: Public domain | W3C validator |