MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lp Structured version   Visualization version   GIF version

Definition df-lp 23049
Description: Define a function on topologies whose value is the set of limit points of the subsets of the base set. See lpval 23052. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
df-lp limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
Distinct variable group:   𝑥,𝑗,𝑦

Detailed syntax breakdown of Definition df-lp
StepHypRef Expression
1 clp 23047 . 2 class limPt
2 vj . . 3 setvar 𝑗
3 ctop 22806 . . 3 class Top
4 vx . . . 4 setvar 𝑥
52cv 1540 . . . . . 6 class 𝑗
65cuni 4859 . . . . 5 class 𝑗
76cpw 4550 . . . 4 class 𝒫 𝑗
8 vy . . . . . . 7 setvar 𝑦
98cv 1540 . . . . . 6 class 𝑦
104cv 1540 . . . . . . . 8 class 𝑥
119csn 4576 . . . . . . . 8 class {𝑦}
1210, 11cdif 3899 . . . . . . 7 class (𝑥 ∖ {𝑦})
13 ccl 22931 . . . . . . . 8 class cls
145, 13cfv 6481 . . . . . . 7 class (cls‘𝑗)
1512, 14cfv 6481 . . . . . 6 class ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))
169, 15wcel 2111 . . . . 5 wff 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))
1716, 8cab 2709 . . . 4 class {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}
184, 7, 17cmpt 5172 . . 3 class (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))})
192, 3, 18cmpt 5172 . 2 class (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
201, 19wceq 1541 1 wff limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
Colors of variables: wff setvar class
This definition is referenced by:  lpfval  23051
  Copyright terms: Public domain W3C validator