MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lp Structured version   Visualization version   GIF version

Definition df-lp 22296
Description: Define a function on topologies whose value is the set of limit points of the subsets of the base set. See lpval 22299. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
df-lp limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
Distinct variable group:   𝑥,𝑗,𝑦

Detailed syntax breakdown of Definition df-lp
StepHypRef Expression
1 clp 22294 . 2 class limPt
2 vj . . 3 setvar 𝑗
3 ctop 22051 . . 3 class Top
4 vx . . . 4 setvar 𝑥
52cv 1538 . . . . . 6 class 𝑗
65cuni 4840 . . . . 5 class 𝑗
76cpw 4534 . . . 4 class 𝒫 𝑗
8 vy . . . . . . 7 setvar 𝑦
98cv 1538 . . . . . 6 class 𝑦
104cv 1538 . . . . . . . 8 class 𝑥
119csn 4562 . . . . . . . 8 class {𝑦}
1210, 11cdif 3885 . . . . . . 7 class (𝑥 ∖ {𝑦})
13 ccl 22178 . . . . . . . 8 class cls
145, 13cfv 6437 . . . . . . 7 class (cls‘𝑗)
1512, 14cfv 6437 . . . . . 6 class ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))
169, 15wcel 2107 . . . . 5 wff 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))
1716, 8cab 2716 . . . 4 class {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}
184, 7, 17cmpt 5158 . . 3 class (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))})
192, 3, 18cmpt 5158 . 2 class (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
201, 19wceq 1539 1 wff limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
Colors of variables: wff setvar class
This definition is referenced by:  lpfval  22298
  Copyright terms: Public domain W3C validator