Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-pg Structured version   Visualization version   GIF version

Definition df-pg 49742
Description: Define the class of partisan games. More precisely, this is the class of partisan game forms, many of which represent equal partisan games. In Metamath, equality between partisan games is represented by a different equivalence relation than class equality. (Contributed by Emmett Weisz, 22-Aug-2021.)
Assertion
Ref Expression
df-pg Pg = setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))

Detailed syntax breakdown of Definition df-pg
StepHypRef Expression
1 cpg 49741 . 2 class Pg
2 vx . . . 4 setvar 𝑥
3 cvv 3436 . . . 4 class V
42cv 1540 . . . . . 6 class 𝑥
54cpw 4545 . . . . 5 class 𝒫 𝑥
65, 5cxp 5609 . . . 4 class (𝒫 𝑥 × 𝒫 𝑥)
72, 3, 6cmpt 5167 . . 3 class (𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥))
87csetrecs 49715 . 2 class setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))
91, 8wceq 1541 1 wff Pg = setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  elpg  49746  pgindnf  49748
  Copyright terms: Public domain W3C validator