Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-pg Structured version   Visualization version   GIF version

Definition df-pg 49715
Description: Define the class of partisan games. More precisely, this is the class of partisan game forms, many of which represent equal partisan games. In Metamath, equality between partisan games is represented by a different equivalence relation than class equality. (Contributed by Emmett Weisz, 22-Aug-2021.)
Assertion
Ref Expression
df-pg Pg = setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))

Detailed syntax breakdown of Definition df-pg
StepHypRef Expression
1 cpg 49714 . 2 class Pg
2 vx . . . 4 setvar 𝑥
3 cvv 3438 . . . 4 class V
42cv 1539 . . . . . 6 class 𝑥
54cpw 4553 . . . . 5 class 𝒫 𝑥
65, 5cxp 5621 . . . 4 class (𝒫 𝑥 × 𝒫 𝑥)
72, 3, 6cmpt 5176 . . 3 class (𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥))
87csetrecs 49688 . 2 class setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))
91, 8wceq 1540 1 wff Pg = setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  elpg  49719  pgindnf  49721
  Copyright terms: Public domain W3C validator