Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-pg Structured version   Visualization version   GIF version

Definition df-pg 49703
Description: Define the class of partisan games. More precisely, this is the class of partisan game forms, many of which represent equal partisan games. In Metamath, equality between partisan games is represented by a different equivalence relation than class equality. (Contributed by Emmett Weisz, 22-Aug-2021.)
Assertion
Ref Expression
df-pg Pg = setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))

Detailed syntax breakdown of Definition df-pg
StepHypRef Expression
1 cpg 49702 . 2 class Pg
2 vx . . . 4 setvar 𝑥
3 cvv 3450 . . . 4 class V
42cv 1539 . . . . . 6 class 𝑥
54cpw 4566 . . . . 5 class 𝒫 𝑥
65, 5cxp 5639 . . . 4 class (𝒫 𝑥 × 𝒫 𝑥)
72, 3, 6cmpt 5191 . . 3 class (𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥))
87csetrecs 49676 . 2 class setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))
91, 8wceq 1540 1 wff Pg = setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  elpg  49707  pgindnf  49709
  Copyright terms: Public domain W3C validator