| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpg | Structured version Visualization version GIF version | ||
| Description: Membership in the class of partisan games. In John Horton Conway's On Numbers and Games, this is stated as "If 𝐿 and 𝑅 are any two sets of games, then there is a game {𝐿 ∣ 𝑅}. All games are constructed in this way." The first sentence corresponds to the backward direction of our theorem, and the second to the forward direction. (Contributed by Emmett Weisz, 27-Aug-2021.) |
| Ref | Expression |
|---|---|
| elpg | ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpglem1 49743 | . . . 4 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) → ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) | |
| 2 | elpglem2 49744 | . . . 4 ⊢ (((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg) → ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥))) | |
| 3 | 1, 2 | impbii 209 | . . 3 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) ↔ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg))) |
| 5 | df-pg 49742 | . . . 4 ⊢ Pg = setrecs((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))) | |
| 6 | 5 | elsetrecs 49732 | . . 3 ⊢ (𝐴 ∈ Pg ↔ ∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥))) |
| 7 | elpglem3 49745 | . . 3 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)))) | |
| 8 | 6, 7 | bitri 275 | . 2 ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)))) |
| 9 | 3anass 1094 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg))) | |
| 10 | 4, 8, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4545 ↦ cmpt 5167 × cxp 5609 ‘cfv 6476 1st c1st 7914 2nd c2nd 7915 Pgcpg 49741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-reg 9473 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-r1 9652 df-rank 9653 df-setrecs 49716 df-pg 49742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |