Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpg Structured version   Visualization version   GIF version

Theorem elpg 48139
Description: Membership in the class of partisan games. In John Horton Conway's On Numbers and Games, this is stated as "If 𝐿 and 𝑅 are any two sets of games, then there is a game {𝐿𝑅}. All games are constructed in this way." The first sentence corresponds to the backward direction of our theorem, and the second to the forward direction. (Contributed by Emmett Weisz, 27-Aug-2021.)
Assertion
Ref Expression
elpg (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))

Proof of Theorem elpg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpglem1 48136 . . . 4 (∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)) → ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
2 elpglem2 48137 . . . 4 (((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg) → ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
31, 2impbii 208 . . 3 (∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)) ↔ ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
43anbi2i 622 . 2 ((𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg)))
5 df-pg 48135 . . . 4 Pg = setrecs((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦)))
65elsetrecs 48125 . . 3 (𝐴 ∈ Pg ↔ ∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)))
7 elpglem3 48138 . . 3 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
86, 7bitri 275 . 2 (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
9 3anass 1093 . 2 ((𝐴 ∈ (V × V) ∧ (1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg)))
104, 8, 93bitr4i 303 1 (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085  wex 1774  wcel 2099  Vcvv 3470  wss 3945  𝒫 cpw 4598  cmpt 5225   × cxp 5670  cfv 6542  1st c1st 7985  2nd c2nd 7986  Pgcpg 48134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-reg 9609  ax-inf2 9658
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-r1 9781  df-rank 9782  df-setrecs 48109  df-pg 48135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator