![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpg | Structured version Visualization version GIF version |
Description: Membership in the class of partisan games. In John Horton Conway's On Numbers and Games, this is stated as "If 𝐿 and 𝑅 are any two sets of games, then there is a game {𝐿 ∣ 𝑅}. All games are constructed in this way." The first sentence corresponds to the backward direction of our theorem, and the second to the forward direction. (Contributed by Emmett Weisz, 27-Aug-2021.) |
Ref | Expression |
---|---|
elpg | ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpglem1 47242 | . . . 4 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) → ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) | |
2 | elpglem2 47243 | . . . 4 ⊢ (((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg) → ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥))) | |
3 | 1, 2 | impbii 208 | . . 3 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) ↔ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
4 | 3 | anbi2i 624 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg))) |
5 | df-pg 47241 | . . . 4 ⊢ Pg = setrecs((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))) | |
6 | 5 | elsetrecs 47231 | . . 3 ⊢ (𝐴 ∈ Pg ↔ ∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥))) |
7 | elpglem3 47244 | . . 3 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)))) | |
8 | 6, 7 | bitri 275 | . 2 ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)))) |
9 | 3anass 1096 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg))) | |
10 | 4, 8, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∃wex 1782 ∈ wcel 2107 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4561 ↦ cmpt 5189 × cxp 5632 ‘cfv 6497 1st c1st 7920 2nd c2nd 7921 Pgcpg 47240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-reg 9533 ax-inf2 9582 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-r1 9705 df-rank 9706 df-setrecs 47215 df-pg 47241 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |