| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpg | Structured version Visualization version GIF version | ||
| Description: Membership in the class of partisan games. In John Horton Conway's On Numbers and Games, this is stated as "If 𝐿 and 𝑅 are any two sets of games, then there is a game {𝐿 ∣ 𝑅}. All games are constructed in this way." The first sentence corresponds to the backward direction of our theorem, and the second to the forward direction. (Contributed by Emmett Weisz, 27-Aug-2021.) |
| Ref | Expression |
|---|---|
| elpg | ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpglem1 49872 | . . . 4 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) → ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) | |
| 2 | elpglem2 49873 | . . . 4 ⊢ (((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg) → ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥))) | |
| 3 | 1, 2 | impbii 209 | . . 3 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) ↔ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg))) |
| 5 | df-pg 49871 | . . . 4 ⊢ Pg = setrecs((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))) | |
| 6 | 5 | elsetrecs 49861 | . . 3 ⊢ (𝐴 ∈ Pg ↔ ∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥))) |
| 7 | elpglem3 49874 | . . 3 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)))) | |
| 8 | 6, 7 | bitri 275 | . 2 ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)))) |
| 9 | 3anass 1094 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg))) | |
| 10 | 4, 8, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4551 ↦ cmpt 5176 × cxp 5619 ‘cfv 6489 1st c1st 7928 2nd c2nd 7929 Pgcpg 49870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-reg 9489 ax-inf2 9542 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-r1 9668 df-rank 9669 df-setrecs 49845 df-pg 49871 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |