Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpglem1 Structured version   Visualization version   GIF version

Theorem elpglem1 48942
Description: Lemma for elpg 48945. (Contributed by Emmett Weisz, 28-Aug-2021.)
Assertion
Ref Expression
elpglem1 (∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)) → ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elpglem1
StepHypRef Expression
1 elpwi 4612 . . . . 5 ((1st𝐴) ∈ 𝒫 𝑥 → (1st𝐴) ⊆ 𝑥)
21adantl 481 . . . 4 ((𝑥 ⊆ Pg ∧ (1st𝐴) ∈ 𝒫 𝑥) → (1st𝐴) ⊆ 𝑥)
3 simpl 482 . . . 4 ((𝑥 ⊆ Pg ∧ (1st𝐴) ∈ 𝒫 𝑥) → 𝑥 ⊆ Pg)
42, 3sstrd 4006 . . 3 ((𝑥 ⊆ Pg ∧ (1st𝐴) ∈ 𝒫 𝑥) → (1st𝐴) ⊆ Pg)
5 elpwi 4612 . . . . 5 ((2nd𝐴) ∈ 𝒫 𝑥 → (2nd𝐴) ⊆ 𝑥)
65adantl 481 . . . 4 ((𝑥 ⊆ Pg ∧ (2nd𝐴) ∈ 𝒫 𝑥) → (2nd𝐴) ⊆ 𝑥)
7 simpl 482 . . . 4 ((𝑥 ⊆ Pg ∧ (2nd𝐴) ∈ 𝒫 𝑥) → 𝑥 ⊆ Pg)
86, 7sstrd 4006 . . 3 ((𝑥 ⊆ Pg ∧ (2nd𝐴) ∈ 𝒫 𝑥) → (2nd𝐴) ⊆ Pg)
94, 8anim12dan 619 . 2 ((𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)) → ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
109exlimiv 1928 1 (∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)) → ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1776  wcel 2106  wss 3963  𝒫 cpw 4605  cfv 6563  1st c1st 8011  2nd c2nd 8012  Pgcpg 48940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ss 3980  df-pw 4607
This theorem is referenced by:  elpg  48945
  Copyright terms: Public domain W3C validator