Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpglem1 | Structured version Visualization version GIF version |
Description: Lemma for elpg 46305. (Contributed by Emmett Weisz, 28-Aug-2021.) |
Ref | Expression |
---|---|
elpglem1 | ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) → ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4539 | . . . . 5 ⊢ ((1st ‘𝐴) ∈ 𝒫 𝑥 → (1st ‘𝐴) ⊆ 𝑥) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑥 ⊆ Pg ∧ (1st ‘𝐴) ∈ 𝒫 𝑥) → (1st ‘𝐴) ⊆ 𝑥) |
3 | simpl 482 | . . . 4 ⊢ ((𝑥 ⊆ Pg ∧ (1st ‘𝐴) ∈ 𝒫 𝑥) → 𝑥 ⊆ Pg) | |
4 | 2, 3 | sstrd 3927 | . . 3 ⊢ ((𝑥 ⊆ Pg ∧ (1st ‘𝐴) ∈ 𝒫 𝑥) → (1st ‘𝐴) ⊆ Pg) |
5 | elpwi 4539 | . . . . 5 ⊢ ((2nd ‘𝐴) ∈ 𝒫 𝑥 → (2nd ‘𝐴) ⊆ 𝑥) | |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑥 ⊆ Pg ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥) → (2nd ‘𝐴) ⊆ 𝑥) |
7 | simpl 482 | . . . 4 ⊢ ((𝑥 ⊆ Pg ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥) → 𝑥 ⊆ Pg) | |
8 | 6, 7 | sstrd 3927 | . . 3 ⊢ ((𝑥 ⊆ Pg ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥) → (2nd ‘𝐴) ⊆ Pg) |
9 | 4, 8 | anim12dan 618 | . 2 ⊢ ((𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) → ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
10 | 9 | exlimiv 1934 | 1 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) → ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 Pgcpg 46300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: elpg 46305 |
Copyright terms: Public domain | W3C validator |