Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgindnf Structured version   Visualization version   GIF version

Theorem pgindnf 49877
Description: Version of pgind 49878 with extraneous not-free requirements. (Contributed by Emmett Weisz, 27-May-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
pgindnf.1 𝑥𝜑
pgindnf.2 𝑦𝜑
pgindnf.3 (𝑥 = 𝑦 → (𝜓𝜒))
pgindnf.4 (𝑦 = 𝐴 → (𝜒𝜃))
pgindnf.5 (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
Assertion
Ref Expression
pgindnf (𝜑 → (𝐴 ∈ Pg → 𝜃))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜒,𝑥   𝜓,𝑦   𝜃,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)   𝐴(𝑥)

Proof of Theorem pgindnf
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pg 49871 . 2 Pg = setrecs((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎)))
2 pgindnf.4 . 2 (𝑦 = 𝐴 → (𝜒𝜃))
3 pgindnf.1 . . . . . . 7 𝑥𝜑
4 nfv 1915 . . . . . . 7 𝑥𝑦𝑧 𝜒
53, 4nfan 1900 . . . . . 6 𝑥(𝜑 ∧ ∀𝑦𝑧 𝜒)
6 pgindlem 49876 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑧)
76sseld 3929 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥)) → 𝑦𝑧))
87imim1d 82 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((𝑦𝑧𝜒) → (𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥)) → 𝜒)))
98ralimdv2 3142 . . . . . . . 8 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (∀𝑦𝑧 𝜒 → ∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒))
10 pgindnf.5 . . . . . . . . 9 (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
111019.21bi 2194 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
129, 11sylan9r 508 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧)) → (∀𝑦𝑧 𝜒𝜓))
1312impancom 451 . . . . . 6 ((𝜑 ∧ ∀𝑦𝑧 𝜒) → (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → 𝜓))
145, 13ralrimi 3231 . . . . 5 ((𝜑 ∧ ∀𝑦𝑧 𝜒) → ∀𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧)𝜓)
15 pgindnf.3 . . . . . 6 (𝑥 = 𝑦 → (𝜓𝜒))
16 vex 3441 . . . . . . . . 9 𝑧 ∈ V
17 pweq 4565 . . . . . . . . . . 11 (𝑎 = 𝑧 → 𝒫 𝑎 = 𝒫 𝑧)
1817sqxpeqd 5653 . . . . . . . . . 10 (𝑎 = 𝑧 → (𝒫 𝑎 × 𝒫 𝑎) = (𝒫 𝑧 × 𝒫 𝑧))
19 eqid 2733 . . . . . . . . . 10 (𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎)) = (𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))
20 vpwex 5319 . . . . . . . . . . 11 𝒫 𝑧 ∈ V
2120, 20xpex 7695 . . . . . . . . . 10 (𝒫 𝑧 × 𝒫 𝑧) ∈ V
2218, 19, 21fvmpt 6938 . . . . . . . . 9 (𝑧 ∈ V → ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧) = (𝒫 𝑧 × 𝒫 𝑧))
2316, 22ax-mp 5 . . . . . . . 8 ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧) = (𝒫 𝑧 × 𝒫 𝑧)
2423eqcomi 2742 . . . . . . 7 (𝒫 𝑧 × 𝒫 𝑧) = ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧)
2524a1i 11 . . . . . 6 (𝑥 = 𝑦 → (𝒫 𝑧 × 𝒫 𝑧) = ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧))
2615, 25cbvralv2 3892 . . . . 5 (∀𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧)𝜓 ↔ ∀𝑦 ∈ ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧)𝜒)
2714, 26sylib 218 . . . 4 ((𝜑 ∧ ∀𝑦𝑧 𝜒) → ∀𝑦 ∈ ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧)𝜒)
2827ex 412 . . 3 (𝜑 → (∀𝑦𝑧 𝜒 → ∀𝑦 ∈ ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧)𝜒))
2928alrimiv 1928 . 2 (𝜑 → ∀𝑧(∀𝑦𝑧 𝜒 → ∀𝑦 ∈ ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧)𝜒))
301, 2, 29setis 49859 1 (𝜑 → (𝐴 ∈ Pg → 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wnf 1784  wcel 2113  wral 3048  Vcvv 3437  cun 3896  𝒫 cpw 4551  cmpt 5176   × cxp 5619  cfv 6489  1st c1st 7928  2nd c2nd 7929  Pgcpg 49870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-13 2374  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fv 6497  df-1st 7930  df-2nd 7931  df-setrecs 49845  df-pg 49871
This theorem is referenced by:  pgind  49878
  Copyright terms: Public domain W3C validator