Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgindnf Structured version   Visualization version   GIF version

Theorem pgindnf 48808
Description: Version of pgind 48809 with extraneous not-free requirements. (Contributed by Emmett Weisz, 27-May-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
pgindnf.1 𝑥𝜑
pgindnf.2 𝑦𝜑
pgindnf.3 (𝑥 = 𝑦 → (𝜓𝜒))
pgindnf.4 (𝑦 = 𝐴 → (𝜒𝜃))
pgindnf.5 (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
Assertion
Ref Expression
pgindnf (𝜑 → (𝐴 ∈ Pg → 𝜃))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜒,𝑥   𝜓,𝑦   𝜃,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)   𝐴(𝑥)

Proof of Theorem pgindnf
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pg 48802 . 2 Pg = setrecs((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎)))
2 pgindnf.4 . 2 (𝑦 = 𝐴 → (𝜒𝜃))
3 pgindnf.1 . . . . . . 7 𝑥𝜑
4 nfv 1913 . . . . . . 7 𝑥𝑦𝑧 𝜒
53, 4nfan 1898 . . . . . 6 𝑥(𝜑 ∧ ∀𝑦𝑧 𝜒)
6 pgindlem 48807 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑧)
76sseld 4007 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥)) → 𝑦𝑧))
87imim1d 82 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((𝑦𝑧𝜒) → (𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥)) → 𝜒)))
98ralimdv2 3169 . . . . . . . 8 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (∀𝑦𝑧 𝜒 → ∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒))
10 pgindnf.5 . . . . . . . . 9 (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
111019.21bi 2190 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
129, 11sylan9r 508 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧)) → (∀𝑦𝑧 𝜒𝜓))
1312impancom 451 . . . . . 6 ((𝜑 ∧ ∀𝑦𝑧 𝜒) → (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → 𝜓))
145, 13ralrimi 3263 . . . . 5 ((𝜑 ∧ ∀𝑦𝑧 𝜒) → ∀𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧)𝜓)
15 pgindnf.3 . . . . . 6 (𝑥 = 𝑦 → (𝜓𝜒))
16 vex 3492 . . . . . . . . 9 𝑧 ∈ V
17 pweq 4636 . . . . . . . . . . 11 (𝑎 = 𝑧 → 𝒫 𝑎 = 𝒫 𝑧)
1817sqxpeqd 5732 . . . . . . . . . 10 (𝑎 = 𝑧 → (𝒫 𝑎 × 𝒫 𝑎) = (𝒫 𝑧 × 𝒫 𝑧))
19 eqid 2740 . . . . . . . . . 10 (𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎)) = (𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))
20 vpwex 5395 . . . . . . . . . . 11 𝒫 𝑧 ∈ V
2120, 20xpex 7788 . . . . . . . . . 10 (𝒫 𝑧 × 𝒫 𝑧) ∈ V
2218, 19, 21fvmpt 7029 . . . . . . . . 9 (𝑧 ∈ V → ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧) = (𝒫 𝑧 × 𝒫 𝑧))
2316, 22ax-mp 5 . . . . . . . 8 ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧) = (𝒫 𝑧 × 𝒫 𝑧)
2423eqcomi 2749 . . . . . . 7 (𝒫 𝑧 × 𝒫 𝑧) = ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧)
2524a1i 11 . . . . . 6 (𝑥 = 𝑦 → (𝒫 𝑧 × 𝒫 𝑧) = ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧))
2615, 25cbvralv2 3970 . . . . 5 (∀𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧)𝜓 ↔ ∀𝑦 ∈ ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧)𝜒)
2714, 26sylib 218 . . . 4 ((𝜑 ∧ ∀𝑦𝑧 𝜒) → ∀𝑦 ∈ ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧)𝜒)
2827ex 412 . . 3 (𝜑 → (∀𝑦𝑧 𝜒 → ∀𝑦 ∈ ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧)𝜒))
2928alrimiv 1926 . 2 (𝜑 → ∀𝑧(∀𝑦𝑧 𝜒 → ∀𝑦 ∈ ((𝑎 ∈ V ↦ (𝒫 𝑎 × 𝒫 𝑎))‘𝑧)𝜒))
301, 2, 29setis 48790 1 (𝜑 → (𝐴 ∈ Pg → 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wnf 1781  wcel 2108  wral 3067  Vcvv 3488  cun 3974  𝒫 cpw 4622  cmpt 5249   × cxp 5698  cfv 6573  1st c1st 8028  2nd c2nd 8029  Pgcpg 48801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031  df-setrecs 48776  df-pg 48802
This theorem is referenced by:  pgind  48809
  Copyright terms: Public domain W3C validator