MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-phl Structured version   Visualization version   GIF version

Definition df-phl 21563
Description: Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.)
Assertion
Ref Expression
df-phl PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
Distinct variable group:   𝑓,𝑔,,𝑣,𝑥,𝑦

Detailed syntax breakdown of Definition df-phl
StepHypRef Expression
1 cphl 21561 . 2 class PreHil
2 vf . . . . . . . . 9 setvar 𝑓
32cv 1540 . . . . . . . 8 class 𝑓
4 csr 20753 . . . . . . . 8 class *-Ring
53, 4wcel 2111 . . . . . . 7 wff 𝑓 ∈ *-Ring
6 vy . . . . . . . . . . 11 setvar 𝑦
7 vv . . . . . . . . . . . 12 setvar 𝑣
87cv 1540 . . . . . . . . . . 11 class 𝑣
96cv 1540 . . . . . . . . . . . 12 class 𝑦
10 vx . . . . . . . . . . . . 13 setvar 𝑥
1110cv 1540 . . . . . . . . . . . 12 class 𝑥
12 vh . . . . . . . . . . . . 13 setvar
1312cv 1540 . . . . . . . . . . . 12 class
149, 11, 13co 7346 . . . . . . . . . . 11 class (𝑦𝑥)
156, 8, 14cmpt 5170 . . . . . . . . . 10 class (𝑦𝑣 ↦ (𝑦𝑥))
16 vg . . . . . . . . . . . 12 setvar 𝑔
1716cv 1540 . . . . . . . . . . 11 class 𝑔
18 crglmod 21106 . . . . . . . . . . . 12 class ringLMod
193, 18cfv 6481 . . . . . . . . . . 11 class (ringLMod‘𝑓)
20 clmhm 20953 . . . . . . . . . . 11 class LMHom
2117, 19, 20co 7346 . . . . . . . . . 10 class (𝑔 LMHom (ringLMod‘𝑓))
2215, 21wcel 2111 . . . . . . . . 9 wff (𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓))
2311, 11, 13co 7346 . . . . . . . . . . 11 class (𝑥𝑥)
24 c0g 17343 . . . . . . . . . . . 12 class 0g
253, 24cfv 6481 . . . . . . . . . . 11 class (0g𝑓)
2623, 25wceq 1541 . . . . . . . . . 10 wff (𝑥𝑥) = (0g𝑓)
2717, 24cfv 6481 . . . . . . . . . . 11 class (0g𝑔)
2811, 27wceq 1541 . . . . . . . . . 10 wff 𝑥 = (0g𝑔)
2926, 28wi 4 . . . . . . . . 9 wff ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔))
3011, 9, 13co 7346 . . . . . . . . . . . 12 class (𝑥𝑦)
31 cstv 17163 . . . . . . . . . . . . 13 class *𝑟
323, 31cfv 6481 . . . . . . . . . . . 12 class (*𝑟𝑓)
3330, 32cfv 6481 . . . . . . . . . . 11 class ((*𝑟𝑓)‘(𝑥𝑦))
3433, 14wceq 1541 . . . . . . . . . 10 wff ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)
3534, 6, 8wral 3047 . . . . . . . . 9 wff 𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)
3622, 29, 35w3a 1086 . . . . . . . 8 wff ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥))
3736, 10, 8wral 3047 . . . . . . 7 wff 𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥))
385, 37wa 395 . . . . . 6 wff (𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
39 csca 17164 . . . . . . 7 class Scalar
4017, 39cfv 6481 . . . . . 6 class (Scalar‘𝑔)
4138, 2, 40wsbc 3736 . . . . 5 wff [(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
42 cip 17166 . . . . . 6 class ·𝑖
4317, 42cfv 6481 . . . . 5 class (·𝑖𝑔)
4441, 12, 43wsbc 3736 . . . 4 wff [(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
45 cbs 17120 . . . . 5 class Base
4617, 45cfv 6481 . . . 4 class (Base‘𝑔)
4744, 7, 46wsbc 3736 . . 3 wff [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
48 clvec 21036 . . 3 class LVec
4947, 16, 48crab 3395 . 2 class {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
501, 49wceq 1541 1 wff PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
Colors of variables: wff setvar class
This definition is referenced by:  isphl  21565
  Copyright terms: Public domain W3C validator