Detailed syntax breakdown of Definition df-phl
| Step | Hyp | Ref
| Expression |
| 1 | | cphl 21642 |
. 2
class
PreHil |
| 2 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 3 | 2 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 4 | | csr 20839 |
. . . . . . . 8
class
*-Ring |
| 5 | 3, 4 | wcel 2108 |
. . . . . . 7
wff 𝑓 ∈ *-Ring |
| 6 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 7 | | vv |
. . . . . . . . . . . 12
setvar 𝑣 |
| 8 | 7 | cv 1539 |
. . . . . . . . . . 11
class 𝑣 |
| 9 | 6 | cv 1539 |
. . . . . . . . . . . 12
class 𝑦 |
| 10 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
| 11 | 10 | cv 1539 |
. . . . . . . . . . . 12
class 𝑥 |
| 12 | | vh |
. . . . . . . . . . . . 13
setvar ℎ |
| 13 | 12 | cv 1539 |
. . . . . . . . . . . 12
class ℎ |
| 14 | 9, 11, 13 | co 7431 |
. . . . . . . . . . 11
class (𝑦ℎ𝑥) |
| 15 | 6, 8, 14 | cmpt 5225 |
. . . . . . . . . 10
class (𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) |
| 16 | | vg |
. . . . . . . . . . . 12
setvar 𝑔 |
| 17 | 16 | cv 1539 |
. . . . . . . . . . 11
class 𝑔 |
| 18 | | crglmod 21171 |
. . . . . . . . . . . 12
class
ringLMod |
| 19 | 3, 18 | cfv 6561 |
. . . . . . . . . . 11
class
(ringLMod‘𝑓) |
| 20 | | clmhm 21018 |
. . . . . . . . . . 11
class
LMHom |
| 21 | 17, 19, 20 | co 7431 |
. . . . . . . . . 10
class (𝑔 LMHom (ringLMod‘𝑓)) |
| 22 | 15, 21 | wcel 2108 |
. . . . . . . . 9
wff (𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) |
| 23 | 11, 11, 13 | co 7431 |
. . . . . . . . . . 11
class (𝑥ℎ𝑥) |
| 24 | | c0g 17484 |
. . . . . . . . . . . 12
class
0g |
| 25 | 3, 24 | cfv 6561 |
. . . . . . . . . . 11
class
(0g‘𝑓) |
| 26 | 23, 25 | wceq 1540 |
. . . . . . . . . 10
wff (𝑥ℎ𝑥) = (0g‘𝑓) |
| 27 | 17, 24 | cfv 6561 |
. . . . . . . . . . 11
class
(0g‘𝑔) |
| 28 | 11, 27 | wceq 1540 |
. . . . . . . . . 10
wff 𝑥 = (0g‘𝑔) |
| 29 | 26, 28 | wi 4 |
. . . . . . . . 9
wff ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) |
| 30 | 11, 9, 13 | co 7431 |
. . . . . . . . . . . 12
class (𝑥ℎ𝑦) |
| 31 | | cstv 17299 |
. . . . . . . . . . . . 13
class
*𝑟 |
| 32 | 3, 31 | cfv 6561 |
. . . . . . . . . . . 12
class
(*𝑟‘𝑓) |
| 33 | 30, 32 | cfv 6561 |
. . . . . . . . . . 11
class
((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) |
| 34 | 33, 14 | wceq 1540 |
. . . . . . . . . 10
wff
((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥) |
| 35 | 34, 6, 8 | wral 3061 |
. . . . . . . . 9
wff
∀𝑦 ∈
𝑣
((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥) |
| 36 | 22, 29, 35 | w3a 1087 |
. . . . . . . 8
wff ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)) |
| 37 | 36, 10, 8 | wral 3061 |
. . . . . . 7
wff
∀𝑥 ∈
𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)) |
| 38 | 5, 37 | wa 395 |
. . . . . 6
wff (𝑓 ∈ *-Ring ∧
∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥))) |
| 39 | | csca 17300 |
. . . . . . 7
class
Scalar |
| 40 | 17, 39 | cfv 6561 |
. . . . . 6
class
(Scalar‘𝑔) |
| 41 | 38, 2, 40 | wsbc 3788 |
. . . . 5
wff
[(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥))) |
| 42 | | cip 17302 |
. . . . . 6
class
·𝑖 |
| 43 | 17, 42 | cfv 6561 |
. . . . 5
class
(·𝑖‘𝑔) |
| 44 | 41, 12, 43 | wsbc 3788 |
. . . 4
wff
[(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥))) |
| 45 | | cbs 17247 |
. . . . 5
class
Base |
| 46 | 17, 45 | cfv 6561 |
. . . 4
class
(Base‘𝑔) |
| 47 | 44, 7, 46 | wsbc 3788 |
. . 3
wff
[(Base‘𝑔) / 𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓
∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣
↦ (𝑦ℎ𝑥)) ∈
(𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 =
(0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥))) |
| 48 | | clvec 21101 |
. . 3
class
LVec |
| 49 | 47, 16, 48 | crab 3436 |
. 2
class {𝑔 ∈ LVec ∣
[(Base‘𝑔) /
𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓
∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣
↦ (𝑦ℎ𝑥)) ∈
(𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 =
(0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} |
| 50 | 1, 49 | wceq 1540 |
1
wff PreHil =
{𝑔 ∈ LVec ∣
[(Base‘𝑔) /
𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓
∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣
↦ (𝑦ℎ𝑥)) ∈
(𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 =
(0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} |