Detailed syntax breakdown of Definition df-phl
Step | Hyp | Ref
| Expression |
1 | | cphl 20838 |
. 2
class
PreHil |
2 | | vf |
. . . . . . . . 9
setvar 𝑓 |
3 | 2 | cv 1538 |
. . . . . . . 8
class 𝑓 |
4 | | csr 20113 |
. . . . . . . 8
class
*-Ring |
5 | 3, 4 | wcel 2107 |
. . . . . . 7
wff 𝑓 ∈ *-Ring |
6 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
7 | | vv |
. . . . . . . . . . . 12
setvar 𝑣 |
8 | 7 | cv 1538 |
. . . . . . . . . . 11
class 𝑣 |
9 | 6 | cv 1538 |
. . . . . . . . . . . 12
class 𝑦 |
10 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
11 | 10 | cv 1538 |
. . . . . . . . . . . 12
class 𝑥 |
12 | | vh |
. . . . . . . . . . . . 13
setvar ℎ |
13 | 12 | cv 1538 |
. . . . . . . . . . . 12
class ℎ |
14 | 9, 11, 13 | co 7284 |
. . . . . . . . . . 11
class (𝑦ℎ𝑥) |
15 | 6, 8, 14 | cmpt 5158 |
. . . . . . . . . 10
class (𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) |
16 | | vg |
. . . . . . . . . . . 12
setvar 𝑔 |
17 | 16 | cv 1538 |
. . . . . . . . . . 11
class 𝑔 |
18 | | crglmod 20440 |
. . . . . . . . . . . 12
class
ringLMod |
19 | 3, 18 | cfv 6437 |
. . . . . . . . . . 11
class
(ringLMod‘𝑓) |
20 | | clmhm 20290 |
. . . . . . . . . . 11
class
LMHom |
21 | 17, 19, 20 | co 7284 |
. . . . . . . . . 10
class (𝑔 LMHom (ringLMod‘𝑓)) |
22 | 15, 21 | wcel 2107 |
. . . . . . . . 9
wff (𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) |
23 | 11, 11, 13 | co 7284 |
. . . . . . . . . . 11
class (𝑥ℎ𝑥) |
24 | | c0g 17159 |
. . . . . . . . . . . 12
class
0g |
25 | 3, 24 | cfv 6437 |
. . . . . . . . . . 11
class
(0g‘𝑓) |
26 | 23, 25 | wceq 1539 |
. . . . . . . . . 10
wff (𝑥ℎ𝑥) = (0g‘𝑓) |
27 | 17, 24 | cfv 6437 |
. . . . . . . . . . 11
class
(0g‘𝑔) |
28 | 11, 27 | wceq 1539 |
. . . . . . . . . 10
wff 𝑥 = (0g‘𝑔) |
29 | 26, 28 | wi 4 |
. . . . . . . . 9
wff ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) |
30 | 11, 9, 13 | co 7284 |
. . . . . . . . . . . 12
class (𝑥ℎ𝑦) |
31 | | cstv 16973 |
. . . . . . . . . . . . 13
class
*𝑟 |
32 | 3, 31 | cfv 6437 |
. . . . . . . . . . . 12
class
(*𝑟‘𝑓) |
33 | 30, 32 | cfv 6437 |
. . . . . . . . . . 11
class
((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) |
34 | 33, 14 | wceq 1539 |
. . . . . . . . . 10
wff
((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥) |
35 | 34, 6, 8 | wral 3065 |
. . . . . . . . 9
wff
∀𝑦 ∈
𝑣
((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥) |
36 | 22, 29, 35 | w3a 1086 |
. . . . . . . 8
wff ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)) |
37 | 36, 10, 8 | wral 3065 |
. . . . . . 7
wff
∀𝑥 ∈
𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)) |
38 | 5, 37 | wa 396 |
. . . . . 6
wff (𝑓 ∈ *-Ring ∧
∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥))) |
39 | | csca 16974 |
. . . . . . 7
class
Scalar |
40 | 17, 39 | cfv 6437 |
. . . . . 6
class
(Scalar‘𝑔) |
41 | 38, 2, 40 | wsbc 3717 |
. . . . 5
wff
[(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥))) |
42 | | cip 16976 |
. . . . . 6
class
·𝑖 |
43 | 17, 42 | cfv 6437 |
. . . . 5
class
(·𝑖‘𝑔) |
44 | 41, 12, 43 | wsbc 3717 |
. . . 4
wff
[(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥))) |
45 | | cbs 16921 |
. . . . 5
class
Base |
46 | 17, 45 | cfv 6437 |
. . . 4
class
(Base‘𝑔) |
47 | 44, 7, 46 | wsbc 3717 |
. . 3
wff
[(Base‘𝑔) / 𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓
∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣
↦ (𝑦ℎ𝑥)) ∈
(𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 =
(0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥))) |
48 | | clvec 20373 |
. . 3
class
LVec |
49 | 47, 16, 48 | crab 3069 |
. 2
class {𝑔 ∈ LVec ∣
[(Base‘𝑔) /
𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓
∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣
↦ (𝑦ℎ𝑥)) ∈
(𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 =
(0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} |
50 | 1, 49 | wceq 1539 |
1
wff PreHil =
{𝑔 ∈ LVec ∣
[(Base‘𝑔) /
𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓
∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣
↦ (𝑦ℎ𝑥)) ∈
(𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 =
(0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} |