MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-phl Structured version   Visualization version   GIF version

Definition df-phl 20821
Description: Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.)
Assertion
Ref Expression
df-phl PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
Distinct variable group:   𝑓,𝑔,,𝑣,𝑥,𝑦

Detailed syntax breakdown of Definition df-phl
StepHypRef Expression
1 cphl 20819 . 2 class PreHil
2 vf . . . . . . . . 9 setvar 𝑓
32cv 1541 . . . . . . . 8 class 𝑓
4 csr 20094 . . . . . . . 8 class *-Ring
53, 4wcel 2110 . . . . . . 7 wff 𝑓 ∈ *-Ring
6 vy . . . . . . . . . . 11 setvar 𝑦
7 vv . . . . . . . . . . . 12 setvar 𝑣
87cv 1541 . . . . . . . . . . 11 class 𝑣
96cv 1541 . . . . . . . . . . . 12 class 𝑦
10 vx . . . . . . . . . . . . 13 setvar 𝑥
1110cv 1541 . . . . . . . . . . . 12 class 𝑥
12 vh . . . . . . . . . . . . 13 setvar
1312cv 1541 . . . . . . . . . . . 12 class
149, 11, 13co 7269 . . . . . . . . . . 11 class (𝑦𝑥)
156, 8, 14cmpt 5162 . . . . . . . . . 10 class (𝑦𝑣 ↦ (𝑦𝑥))
16 vg . . . . . . . . . . . 12 setvar 𝑔
1716cv 1541 . . . . . . . . . . 11 class 𝑔
18 crglmod 20421 . . . . . . . . . . . 12 class ringLMod
193, 18cfv 6431 . . . . . . . . . . 11 class (ringLMod‘𝑓)
20 clmhm 20271 . . . . . . . . . . 11 class LMHom
2117, 19, 20co 7269 . . . . . . . . . 10 class (𝑔 LMHom (ringLMod‘𝑓))
2215, 21wcel 2110 . . . . . . . . 9 wff (𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓))
2311, 11, 13co 7269 . . . . . . . . . . 11 class (𝑥𝑥)
24 c0g 17140 . . . . . . . . . . . 12 class 0g
253, 24cfv 6431 . . . . . . . . . . 11 class (0g𝑓)
2623, 25wceq 1542 . . . . . . . . . 10 wff (𝑥𝑥) = (0g𝑓)
2717, 24cfv 6431 . . . . . . . . . . 11 class (0g𝑔)
2811, 27wceq 1542 . . . . . . . . . 10 wff 𝑥 = (0g𝑔)
2926, 28wi 4 . . . . . . . . 9 wff ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔))
3011, 9, 13co 7269 . . . . . . . . . . . 12 class (𝑥𝑦)
31 cstv 16954 . . . . . . . . . . . . 13 class *𝑟
323, 31cfv 6431 . . . . . . . . . . . 12 class (*𝑟𝑓)
3330, 32cfv 6431 . . . . . . . . . . 11 class ((*𝑟𝑓)‘(𝑥𝑦))
3433, 14wceq 1542 . . . . . . . . . 10 wff ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)
3534, 6, 8wral 3066 . . . . . . . . 9 wff 𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)
3622, 29, 35w3a 1086 . . . . . . . 8 wff ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥))
3736, 10, 8wral 3066 . . . . . . 7 wff 𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥))
385, 37wa 396 . . . . . 6 wff (𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
39 csca 16955 . . . . . . 7 class Scalar
4017, 39cfv 6431 . . . . . 6 class (Scalar‘𝑔)
4138, 2, 40wsbc 3720 . . . . 5 wff [(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
42 cip 16957 . . . . . 6 class ·𝑖
4317, 42cfv 6431 . . . . 5 class (·𝑖𝑔)
4441, 12, 43wsbc 3720 . . . 4 wff [(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
45 cbs 16902 . . . . 5 class Base
4617, 45cfv 6431 . . . 4 class (Base‘𝑔)
4744, 7, 46wsbc 3720 . . 3 wff [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
48 clvec 20354 . . 3 class LVec
4947, 16, 48crab 3070 . 2 class {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
501, 49wceq 1542 1 wff PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
Colors of variables: wff setvar class
This definition is referenced by:  isphl  20823
  Copyright terms: Public domain W3C validator