MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-phl Structured version   Visualization version   GIF version

Definition df-phl 21542
Description: Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.)
Assertion
Ref Expression
df-phl PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
Distinct variable group:   𝑓,𝑔,,𝑣,𝑥,𝑦

Detailed syntax breakdown of Definition df-phl
StepHypRef Expression
1 cphl 21540 . 2 class PreHil
2 vf . . . . . . . . 9 setvar 𝑓
32cv 1539 . . . . . . . 8 class 𝑓
4 csr 20754 . . . . . . . 8 class *-Ring
53, 4wcel 2109 . . . . . . 7 wff 𝑓 ∈ *-Ring
6 vy . . . . . . . . . . 11 setvar 𝑦
7 vv . . . . . . . . . . . 12 setvar 𝑣
87cv 1539 . . . . . . . . . . 11 class 𝑣
96cv 1539 . . . . . . . . . . . 12 class 𝑦
10 vx . . . . . . . . . . . . 13 setvar 𝑥
1110cv 1539 . . . . . . . . . . . 12 class 𝑥
12 vh . . . . . . . . . . . . 13 setvar
1312cv 1539 . . . . . . . . . . . 12 class
149, 11, 13co 7390 . . . . . . . . . . 11 class (𝑦𝑥)
156, 8, 14cmpt 5191 . . . . . . . . . 10 class (𝑦𝑣 ↦ (𝑦𝑥))
16 vg . . . . . . . . . . . 12 setvar 𝑔
1716cv 1539 . . . . . . . . . . 11 class 𝑔
18 crglmod 21086 . . . . . . . . . . . 12 class ringLMod
193, 18cfv 6514 . . . . . . . . . . 11 class (ringLMod‘𝑓)
20 clmhm 20933 . . . . . . . . . . 11 class LMHom
2117, 19, 20co 7390 . . . . . . . . . 10 class (𝑔 LMHom (ringLMod‘𝑓))
2215, 21wcel 2109 . . . . . . . . 9 wff (𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓))
2311, 11, 13co 7390 . . . . . . . . . . 11 class (𝑥𝑥)
24 c0g 17409 . . . . . . . . . . . 12 class 0g
253, 24cfv 6514 . . . . . . . . . . 11 class (0g𝑓)
2623, 25wceq 1540 . . . . . . . . . 10 wff (𝑥𝑥) = (0g𝑓)
2717, 24cfv 6514 . . . . . . . . . . 11 class (0g𝑔)
2811, 27wceq 1540 . . . . . . . . . 10 wff 𝑥 = (0g𝑔)
2926, 28wi 4 . . . . . . . . 9 wff ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔))
3011, 9, 13co 7390 . . . . . . . . . . . 12 class (𝑥𝑦)
31 cstv 17229 . . . . . . . . . . . . 13 class *𝑟
323, 31cfv 6514 . . . . . . . . . . . 12 class (*𝑟𝑓)
3330, 32cfv 6514 . . . . . . . . . . 11 class ((*𝑟𝑓)‘(𝑥𝑦))
3433, 14wceq 1540 . . . . . . . . . 10 wff ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)
3534, 6, 8wral 3045 . . . . . . . . 9 wff 𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)
3622, 29, 35w3a 1086 . . . . . . . 8 wff ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥))
3736, 10, 8wral 3045 . . . . . . 7 wff 𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥))
385, 37wa 395 . . . . . 6 wff (𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
39 csca 17230 . . . . . . 7 class Scalar
4017, 39cfv 6514 . . . . . 6 class (Scalar‘𝑔)
4138, 2, 40wsbc 3756 . . . . 5 wff [(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
42 cip 17232 . . . . . 6 class ·𝑖
4317, 42cfv 6514 . . . . 5 class (·𝑖𝑔)
4441, 12, 43wsbc 3756 . . . 4 wff [(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
45 cbs 17186 . . . . 5 class Base
4617, 45cfv 6514 . . . 4 class (Base‘𝑔)
4744, 7, 46wsbc 3756 . . 3 wff [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
48 clvec 21016 . . 3 class LVec
4947, 16, 48crab 3408 . 2 class {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
501, 49wceq 1540 1 wff PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
Colors of variables: wff setvar class
This definition is referenced by:  isphl  21544
  Copyright terms: Public domain W3C validator