MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-phl Structured version   Visualization version   GIF version

Definition df-phl 20840
Description: Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.)
Assertion
Ref Expression
df-phl PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
Distinct variable group:   𝑓,𝑔,,𝑣,𝑥,𝑦

Detailed syntax breakdown of Definition df-phl
StepHypRef Expression
1 cphl 20838 . 2 class PreHil
2 vf . . . . . . . . 9 setvar 𝑓
32cv 1538 . . . . . . . 8 class 𝑓
4 csr 20113 . . . . . . . 8 class *-Ring
53, 4wcel 2107 . . . . . . 7 wff 𝑓 ∈ *-Ring
6 vy . . . . . . . . . . 11 setvar 𝑦
7 vv . . . . . . . . . . . 12 setvar 𝑣
87cv 1538 . . . . . . . . . . 11 class 𝑣
96cv 1538 . . . . . . . . . . . 12 class 𝑦
10 vx . . . . . . . . . . . . 13 setvar 𝑥
1110cv 1538 . . . . . . . . . . . 12 class 𝑥
12 vh . . . . . . . . . . . . 13 setvar
1312cv 1538 . . . . . . . . . . . 12 class
149, 11, 13co 7284 . . . . . . . . . . 11 class (𝑦𝑥)
156, 8, 14cmpt 5158 . . . . . . . . . 10 class (𝑦𝑣 ↦ (𝑦𝑥))
16 vg . . . . . . . . . . . 12 setvar 𝑔
1716cv 1538 . . . . . . . . . . 11 class 𝑔
18 crglmod 20440 . . . . . . . . . . . 12 class ringLMod
193, 18cfv 6437 . . . . . . . . . . 11 class (ringLMod‘𝑓)
20 clmhm 20290 . . . . . . . . . . 11 class LMHom
2117, 19, 20co 7284 . . . . . . . . . 10 class (𝑔 LMHom (ringLMod‘𝑓))
2215, 21wcel 2107 . . . . . . . . 9 wff (𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓))
2311, 11, 13co 7284 . . . . . . . . . . 11 class (𝑥𝑥)
24 c0g 17159 . . . . . . . . . . . 12 class 0g
253, 24cfv 6437 . . . . . . . . . . 11 class (0g𝑓)
2623, 25wceq 1539 . . . . . . . . . 10 wff (𝑥𝑥) = (0g𝑓)
2717, 24cfv 6437 . . . . . . . . . . 11 class (0g𝑔)
2811, 27wceq 1539 . . . . . . . . . 10 wff 𝑥 = (0g𝑔)
2926, 28wi 4 . . . . . . . . 9 wff ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔))
3011, 9, 13co 7284 . . . . . . . . . . . 12 class (𝑥𝑦)
31 cstv 16973 . . . . . . . . . . . . 13 class *𝑟
323, 31cfv 6437 . . . . . . . . . . . 12 class (*𝑟𝑓)
3330, 32cfv 6437 . . . . . . . . . . 11 class ((*𝑟𝑓)‘(𝑥𝑦))
3433, 14wceq 1539 . . . . . . . . . 10 wff ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)
3534, 6, 8wral 3065 . . . . . . . . 9 wff 𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)
3622, 29, 35w3a 1086 . . . . . . . 8 wff ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥))
3736, 10, 8wral 3065 . . . . . . 7 wff 𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥))
385, 37wa 396 . . . . . 6 wff (𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
39 csca 16974 . . . . . . 7 class Scalar
4017, 39cfv 6437 . . . . . 6 class (Scalar‘𝑔)
4138, 2, 40wsbc 3717 . . . . 5 wff [(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
42 cip 16976 . . . . . 6 class ·𝑖
4317, 42cfv 6437 . . . . 5 class (·𝑖𝑔)
4441, 12, 43wsbc 3717 . . . 4 wff [(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
45 cbs 16921 . . . . 5 class Base
4617, 45cfv 6437 . . . 4 class (Base‘𝑔)
4744, 7, 46wsbc 3717 . . 3 wff [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))
48 clvec 20373 . . 3 class LVec
4947, 16, 48crab 3069 . 2 class {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
501, 49wceq 1539 1 wff PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
Colors of variables: wff setvar class
This definition is referenced by:  isphl  20842
  Copyright terms: Public domain W3C validator