MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ipf Structured version   Visualization version   GIF version

Definition df-ipf 20832
Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 20856), while ·𝑖 only has closure (ipcl 20838). (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
df-ipf ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-ipf
StepHypRef Expression
1 cipf 20830 . 2 class ·if
2 vg . . 3 setvar 𝑔
3 cvv 3432 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1538 . . . . 5 class 𝑔
7 cbs 16912 . . . . 5 class Base
86, 7cfv 6433 . . . 4 class (Base‘𝑔)
94cv 1538 . . . . 5 class 𝑥
105cv 1538 . . . . 5 class 𝑦
11 cip 16967 . . . . . 6 class ·𝑖
126, 11cfv 6433 . . . . 5 class (·𝑖𝑔)
139, 10, 12co 7275 . . . 4 class (𝑥(·𝑖𝑔)𝑦)
144, 5, 8, 8, 13cmpo 7277 . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦))
152, 3, 14cmpt 5157 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
161, 15wceq 1539 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
Colors of variables: wff setvar class
This definition is referenced by:  ipffval  20853
  Copyright terms: Public domain W3C validator