![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ipf | Structured version Visualization version GIF version |
Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21576), while ·𝑖 only has closure (ipcl 21558). (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
df-ipf | ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cipf 21550 | . 2 class ·if | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3469 | . . 3 class V | |
4 | vx | . . . 4 setvar 𝑥 | |
5 | vy | . . . 4 setvar 𝑦 | |
6 | 2 | cv 1533 | . . . . 5 class 𝑔 |
7 | cbs 17173 | . . . . 5 class Base | |
8 | 6, 7 | cfv 6542 | . . . 4 class (Base‘𝑔) |
9 | 4 | cv 1533 | . . . . 5 class 𝑥 |
10 | 5 | cv 1533 | . . . . 5 class 𝑦 |
11 | cip 17231 | . . . . . 6 class ·𝑖 | |
12 | 6, 11 | cfv 6542 | . . . . 5 class (·𝑖‘𝑔) |
13 | 9, 10, 12 | co 7414 | . . . 4 class (𝑥(·𝑖‘𝑔)𝑦) |
14 | 4, 5, 8, 8, 13 | cmpo 7416 | . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) |
15 | 2, 3, 14 | cmpt 5225 | . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
16 | 1, 15 | wceq 1534 | 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
Colors of variables: wff setvar class |
This definition is referenced by: ipffval 21573 |
Copyright terms: Public domain | W3C validator |