MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ipf Structured version   Visualization version   GIF version

Definition df-ipf 21564
Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21588), while ·𝑖 only has closure (ipcl 21570). (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
df-ipf ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-ipf
StepHypRef Expression
1 cipf 21562 . 2 class ·if
2 vg . . 3 setvar 𝑔
3 cvv 3436 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1540 . . . . 5 class 𝑔
7 cbs 17120 . . . . 5 class Base
86, 7cfv 6481 . . . 4 class (Base‘𝑔)
94cv 1540 . . . . 5 class 𝑥
105cv 1540 . . . . 5 class 𝑦
11 cip 17166 . . . . . 6 class ·𝑖
126, 11cfv 6481 . . . . 5 class (·𝑖𝑔)
139, 10, 12co 7346 . . . 4 class (𝑥(·𝑖𝑔)𝑦)
144, 5, 8, 8, 13cmpo 7348 . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦))
152, 3, 14cmpt 5170 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
161, 15wceq 1541 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
Colors of variables: wff setvar class
This definition is referenced by:  ipffval  21585
  Copyright terms: Public domain W3C validator