![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ipf | Structured version Visualization version GIF version |
Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21692), while ·𝑖 only has closure (ipcl 21674). (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
df-ipf | ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cipf 21666 | . 2 class ·if | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3488 | . . 3 class V | |
4 | vx | . . . 4 setvar 𝑥 | |
5 | vy | . . . 4 setvar 𝑦 | |
6 | 2 | cv 1536 | . . . . 5 class 𝑔 |
7 | cbs 17258 | . . . . 5 class Base | |
8 | 6, 7 | cfv 6573 | . . . 4 class (Base‘𝑔) |
9 | 4 | cv 1536 | . . . . 5 class 𝑥 |
10 | 5 | cv 1536 | . . . . 5 class 𝑦 |
11 | cip 17316 | . . . . . 6 class ·𝑖 | |
12 | 6, 11 | cfv 6573 | . . . . 5 class (·𝑖‘𝑔) |
13 | 9, 10, 12 | co 7448 | . . . 4 class (𝑥(·𝑖‘𝑔)𝑦) |
14 | 4, 5, 8, 8, 13 | cmpo 7450 | . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) |
15 | 2, 3, 14 | cmpt 5249 | . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
16 | 1, 15 | wceq 1537 | 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
Colors of variables: wff setvar class |
This definition is referenced by: ipffval 21689 |
Copyright terms: Public domain | W3C validator |