Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ipf | Structured version Visualization version GIF version |
Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 20856), while ·𝑖 only has closure (ipcl 20838). (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
df-ipf | ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cipf 20830 | . 2 class ·if | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3432 | . . 3 class V | |
4 | vx | . . . 4 setvar 𝑥 | |
5 | vy | . . . 4 setvar 𝑦 | |
6 | 2 | cv 1538 | . . . . 5 class 𝑔 |
7 | cbs 16912 | . . . . 5 class Base | |
8 | 6, 7 | cfv 6433 | . . . 4 class (Base‘𝑔) |
9 | 4 | cv 1538 | . . . . 5 class 𝑥 |
10 | 5 | cv 1538 | . . . . 5 class 𝑦 |
11 | cip 16967 | . . . . . 6 class ·𝑖 | |
12 | 6, 11 | cfv 6433 | . . . . 5 class (·𝑖‘𝑔) |
13 | 9, 10, 12 | co 7275 | . . . 4 class (𝑥(·𝑖‘𝑔)𝑦) |
14 | 4, 5, 8, 8, 13 | cmpo 7277 | . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) |
15 | 2, 3, 14 | cmpt 5157 | . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
16 | 1, 15 | wceq 1539 | 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
Colors of variables: wff setvar class |
This definition is referenced by: ipffval 20853 |
Copyright terms: Public domain | W3C validator |