Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ipf | Structured version Visualization version GIF version |
Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 20768), while ·𝑖 only has closure (ipcl 20750). (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
df-ipf | ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cipf 20742 | . 2 class ·if | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3422 | . . 3 class V | |
4 | vx | . . . 4 setvar 𝑥 | |
5 | vy | . . . 4 setvar 𝑦 | |
6 | 2 | cv 1538 | . . . . 5 class 𝑔 |
7 | cbs 16840 | . . . . 5 class Base | |
8 | 6, 7 | cfv 6418 | . . . 4 class (Base‘𝑔) |
9 | 4 | cv 1538 | . . . . 5 class 𝑥 |
10 | 5 | cv 1538 | . . . . 5 class 𝑦 |
11 | cip 16893 | . . . . . 6 class ·𝑖 | |
12 | 6, 11 | cfv 6418 | . . . . 5 class (·𝑖‘𝑔) |
13 | 9, 10, 12 | co 7255 | . . . 4 class (𝑥(·𝑖‘𝑔)𝑦) |
14 | 4, 5, 8, 8, 13 | cmpo 7257 | . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) |
15 | 2, 3, 14 | cmpt 5153 | . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
16 | 1, 15 | wceq 1539 | 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
Colors of variables: wff setvar class |
This definition is referenced by: ipffval 20765 |
Copyright terms: Public domain | W3C validator |