| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ipf | Structured version Visualization version GIF version | ||
| Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21593), while ·𝑖 only has closure (ipcl 21575). (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| df-ipf | ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cipf 21567 | . 2 class ·if | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3444 | . . 3 class V | |
| 4 | vx | . . . 4 setvar 𝑥 | |
| 5 | vy | . . . 4 setvar 𝑦 | |
| 6 | 2 | cv 1539 | . . . . 5 class 𝑔 |
| 7 | cbs 17155 | . . . . 5 class Base | |
| 8 | 6, 7 | cfv 6499 | . . . 4 class (Base‘𝑔) |
| 9 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 10 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 11 | cip 17201 | . . . . . 6 class ·𝑖 | |
| 12 | 6, 11 | cfv 6499 | . . . . 5 class (·𝑖‘𝑔) |
| 13 | 9, 10, 12 | co 7369 | . . . 4 class (𝑥(·𝑖‘𝑔)𝑦) |
| 14 | 4, 5, 8, 8, 13 | cmpo 7371 | . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) |
| 15 | 2, 3, 14 | cmpt 5183 | . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| 16 | 1, 15 | wceq 1540 | 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ipffval 21590 |
| Copyright terms: Public domain | W3C validator |