| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ipf | Structured version Visualization version GIF version | ||
| Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21588), while ·𝑖 only has closure (ipcl 21570). (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| df-ipf | ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cipf 21562 | . 2 class ·if | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3436 | . . 3 class V | |
| 4 | vx | . . . 4 setvar 𝑥 | |
| 5 | vy | . . . 4 setvar 𝑦 | |
| 6 | 2 | cv 1540 | . . . . 5 class 𝑔 |
| 7 | cbs 17120 | . . . . 5 class Base | |
| 8 | 6, 7 | cfv 6481 | . . . 4 class (Base‘𝑔) |
| 9 | 4 | cv 1540 | . . . . 5 class 𝑥 |
| 10 | 5 | cv 1540 | . . . . 5 class 𝑦 |
| 11 | cip 17166 | . . . . . 6 class ·𝑖 | |
| 12 | 6, 11 | cfv 6481 | . . . . 5 class (·𝑖‘𝑔) |
| 13 | 9, 10, 12 | co 7346 | . . . 4 class (𝑥(·𝑖‘𝑔)𝑦) |
| 14 | 4, 5, 8, 8, 13 | cmpo 7348 | . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) |
| 15 | 2, 3, 14 | cmpt 5170 | . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| 16 | 1, 15 | wceq 1541 | 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ipffval 21585 |
| Copyright terms: Public domain | W3C validator |