MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ipf Structured version   Visualization version   GIF version

Definition df-ipf 21536
Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21560), while ·𝑖 only has closure (ipcl 21542). (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
df-ipf ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-ipf
StepHypRef Expression
1 cipf 21534 . 2 class ·if
2 vg . . 3 setvar 𝑔
3 cvv 3447 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1539 . . . . 5 class 𝑔
7 cbs 17179 . . . . 5 class Base
86, 7cfv 6511 . . . 4 class (Base‘𝑔)
94cv 1539 . . . . 5 class 𝑥
105cv 1539 . . . . 5 class 𝑦
11 cip 17225 . . . . . 6 class ·𝑖
126, 11cfv 6511 . . . . 5 class (·𝑖𝑔)
139, 10, 12co 7387 . . . 4 class (𝑥(·𝑖𝑔)𝑦)
144, 5, 8, 8, 13cmpo 7389 . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦))
152, 3, 14cmpt 5188 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
161, 15wceq 1540 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
Colors of variables: wff setvar class
This definition is referenced by:  ipffval  21557
  Copyright terms: Public domain W3C validator