| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ipf | Structured version Visualization version GIF version | ||
| Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21560), while ·𝑖 only has closure (ipcl 21542). (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| df-ipf | ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cipf 21534 | . 2 class ·if | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3447 | . . 3 class V | |
| 4 | vx | . . . 4 setvar 𝑥 | |
| 5 | vy | . . . 4 setvar 𝑦 | |
| 6 | 2 | cv 1539 | . . . . 5 class 𝑔 |
| 7 | cbs 17179 | . . . . 5 class Base | |
| 8 | 6, 7 | cfv 6511 | . . . 4 class (Base‘𝑔) |
| 9 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 10 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 11 | cip 17225 | . . . . . 6 class ·𝑖 | |
| 12 | 6, 11 | cfv 6511 | . . . . 5 class (·𝑖‘𝑔) |
| 13 | 9, 10, 12 | co 7387 | . . . 4 class (𝑥(·𝑖‘𝑔)𝑦) |
| 14 | 4, 5, 8, 8, 13 | cmpo 7389 | . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) |
| 15 | 2, 3, 14 | cmpt 5188 | . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| 16 | 1, 15 | wceq 1540 | 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ipffval 21557 |
| Copyright terms: Public domain | W3C validator |