MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ipf Structured version   Visualization version   GIF version

Definition df-ipf 21552
Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21576), while ·𝑖 only has closure (ipcl 21558). (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
df-ipf ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-ipf
StepHypRef Expression
1 cipf 21550 . 2 class ·if
2 vg . . 3 setvar 𝑔
3 cvv 3469 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1533 . . . . 5 class 𝑔
7 cbs 17173 . . . . 5 class Base
86, 7cfv 6542 . . . 4 class (Base‘𝑔)
94cv 1533 . . . . 5 class 𝑥
105cv 1533 . . . . 5 class 𝑦
11 cip 17231 . . . . . 6 class ·𝑖
126, 11cfv 6542 . . . . 5 class (·𝑖𝑔)
139, 10, 12co 7414 . . . 4 class (𝑥(·𝑖𝑔)𝑦)
144, 5, 8, 8, 13cmpo 7416 . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦))
152, 3, 14cmpt 5225 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
161, 15wceq 1534 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
Colors of variables: wff setvar class
This definition is referenced by:  ipffval  21573
  Copyright terms: Public domain W3C validator