| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ipf | Structured version Visualization version GIF version | ||
| Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21558), while ·𝑖 only has closure (ipcl 21540). (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| df-ipf | ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cipf 21532 | . 2 class ·if | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3436 | . . 3 class V | |
| 4 | vx | . . . 4 setvar 𝑥 | |
| 5 | vy | . . . 4 setvar 𝑦 | |
| 6 | 2 | cv 1539 | . . . . 5 class 𝑔 |
| 7 | cbs 17120 | . . . . 5 class Base | |
| 8 | 6, 7 | cfv 6482 | . . . 4 class (Base‘𝑔) |
| 9 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 10 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 11 | cip 17166 | . . . . . 6 class ·𝑖 | |
| 12 | 6, 11 | cfv 6482 | . . . . 5 class (·𝑖‘𝑔) |
| 13 | 9, 10, 12 | co 7349 | . . . 4 class (𝑥(·𝑖‘𝑔)𝑦) |
| 14 | 4, 5, 8, 8, 13 | cmpo 7351 | . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) |
| 15 | 2, 3, 14 | cmpt 5173 | . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| 16 | 1, 15 | wceq 1540 | 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ipffval 21555 |
| Copyright terms: Public domain | W3C validator |