MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ipf Structured version   Visualization version   GIF version

Definition df-ipf 21534
Description: Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21558), while ·𝑖 only has closure (ipcl 21540). (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
df-ipf ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-ipf
StepHypRef Expression
1 cipf 21532 . 2 class ·if
2 vg . . 3 setvar 𝑔
3 cvv 3436 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1539 . . . . 5 class 𝑔
7 cbs 17120 . . . . 5 class Base
86, 7cfv 6482 . . . 4 class (Base‘𝑔)
94cv 1539 . . . . 5 class 𝑥
105cv 1539 . . . . 5 class 𝑦
11 cip 17166 . . . . . 6 class ·𝑖
126, 11cfv 6482 . . . . 5 class (·𝑖𝑔)
139, 10, 12co 7349 . . . 4 class (𝑥(·𝑖𝑔)𝑦)
144, 5, 8, 8, 13cmpo 7351 . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦))
152, 3, 14cmpt 5173 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
161, 15wceq 1540 1 wff ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
Colors of variables: wff setvar class
This definition is referenced by:  ipffval  21555
  Copyright terms: Public domain W3C validator