Detailed syntax breakdown of Definition df-phtpc
Step | Hyp | Ref
| Expression |
1 | | cphtpc 24132 |
. 2
class
≃ph |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | ctop 22042 |
. . 3
class
Top |
4 | | vf |
. . . . . . . 8
setvar 𝑓 |
5 | 4 | cv 1538 |
. . . . . . 7
class 𝑓 |
6 | | vg |
. . . . . . . 8
setvar 𝑔 |
7 | 6 | cv 1538 |
. . . . . . 7
class 𝑔 |
8 | 5, 7 | cpr 4563 |
. . . . . 6
class {𝑓, 𝑔} |
9 | | cii 24038 |
. . . . . . 7
class
II |
10 | 2 | cv 1538 |
. . . . . . 7
class 𝑥 |
11 | | ccn 22375 |
. . . . . . 7
class
Cn |
12 | 9, 10, 11 | co 7275 |
. . . . . 6
class (II Cn
𝑥) |
13 | 8, 12 | wss 3887 |
. . . . 5
wff {𝑓, 𝑔} ⊆ (II Cn 𝑥) |
14 | | cphtpy 24131 |
. . . . . . . 8
class
PHtpy |
15 | 10, 14 | cfv 6433 |
. . . . . . 7
class
(PHtpy‘𝑥) |
16 | 5, 7, 15 | co 7275 |
. . . . . 6
class (𝑓(PHtpy‘𝑥)𝑔) |
17 | | c0 4256 |
. . . . . 6
class
∅ |
18 | 16, 17 | wne 2943 |
. . . . 5
wff (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅ |
19 | 13, 18 | wa 396 |
. . . 4
wff ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅) |
20 | 19, 4, 6 | copab 5136 |
. . 3
class
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)} |
21 | 2, 3, 20 | cmpt 5157 |
. 2
class (𝑥 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)}) |
22 | 1, 21 | wceq 1539 |
1
wff
≃ph = (𝑥 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)}) |