Detailed syntax breakdown of Definition df-phtpc
| Step | Hyp | Ref
| Expression |
| 1 | | cphtpc 25001 |
. 2
class
≃ph |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | ctop 22899 |
. . 3
class
Top |
| 4 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 6 | | vg |
. . . . . . . 8
setvar 𝑔 |
| 7 | 6 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 8 | 5, 7 | cpr 4628 |
. . . . . 6
class {𝑓, 𝑔} |
| 9 | | cii 24901 |
. . . . . . 7
class
II |
| 10 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 11 | | ccn 23232 |
. . . . . . 7
class
Cn |
| 12 | 9, 10, 11 | co 7431 |
. . . . . 6
class (II Cn
𝑥) |
| 13 | 8, 12 | wss 3951 |
. . . . 5
wff {𝑓, 𝑔} ⊆ (II Cn 𝑥) |
| 14 | | cphtpy 25000 |
. . . . . . . 8
class
PHtpy |
| 15 | 10, 14 | cfv 6561 |
. . . . . . 7
class
(PHtpy‘𝑥) |
| 16 | 5, 7, 15 | co 7431 |
. . . . . 6
class (𝑓(PHtpy‘𝑥)𝑔) |
| 17 | | c0 4333 |
. . . . . 6
class
∅ |
| 18 | 16, 17 | wne 2940 |
. . . . 5
wff (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅ |
| 19 | 13, 18 | wa 395 |
. . . 4
wff ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅) |
| 20 | 19, 4, 6 | copab 5205 |
. . 3
class
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)} |
| 21 | 2, 3, 20 | cmpt 5225 |
. 2
class (𝑥 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)}) |
| 22 | 1, 21 | wceq 1540 |
1
wff
≃ph = (𝑥 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)}) |