MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpc Structured version   Visualization version   GIF version

Theorem isphtpc 24923
Description: The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
isphtpc (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))

Proof of Theorem isphtpc
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5096 . . 3 (𝐹( ≃ph𝐽)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ ( ≃ph𝐽))
2 df-phtpc 24921 . . . 4 ph = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅)})
32mptrcl 6946 . . 3 (⟨𝐹, 𝐺⟩ ∈ ( ≃ph𝐽) → 𝐽 ∈ Top)
41, 3sylbi 217 . 2 (𝐹( ≃ph𝐽)𝐺𝐽 ∈ Top)
5 cntop2 23159 . . 3 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
653ad2ant1 1133 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) → 𝐽 ∈ Top)
7 oveq2 7362 . . . . . . . . 9 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
87sseq2d 3963 . . . . . . . 8 (𝑗 = 𝐽 → ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ↔ {𝑓, 𝑔} ⊆ (II Cn 𝐽)))
9 vex 3441 . . . . . . . . 9 𝑓 ∈ V
10 vex 3441 . . . . . . . . 9 𝑔 ∈ V
119, 10prss 4773 . . . . . . . 8 ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ↔ {𝑓, 𝑔} ⊆ (II Cn 𝐽))
128, 11bitr4di 289 . . . . . . 7 (𝑗 = 𝐽 → ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽))))
13 fveq2 6830 . . . . . . . . 9 (𝑗 = 𝐽 → (PHtpy‘𝑗) = (PHtpy‘𝐽))
1413oveqd 7371 . . . . . . . 8 (𝑗 = 𝐽 → (𝑓(PHtpy‘𝑗)𝑔) = (𝑓(PHtpy‘𝐽)𝑔))
1514neeq1d 2988 . . . . . . 7 (𝑗 = 𝐽 → ((𝑓(PHtpy‘𝑗)𝑔) ≠ ∅ ↔ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅))
1612, 15anbi12d 632 . . . . . 6 (𝑗 = 𝐽 → (({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅) ↔ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)))
1716opabbidv 5161 . . . . 5 (𝑗 = 𝐽 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)})
18 ovex 7387 . . . . . . 7 (II Cn 𝐽) ∈ V
1918, 18xpex 7694 . . . . . 6 ((II Cn 𝐽) × (II Cn 𝐽)) ∈ V
20 opabssxp 5713 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} ⊆ ((II Cn 𝐽) × (II Cn 𝐽))
2119, 20ssexi 5264 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} ∈ V
2217, 2, 21fvmpt 6937 . . . 4 (𝐽 ∈ Top → ( ≃ph𝐽) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)})
2322breqd 5106 . . 3 (𝐽 ∈ Top → (𝐹( ≃ph𝐽)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺))
24 oveq12 7363 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓(PHtpy‘𝐽)𝑔) = (𝐹(PHtpy‘𝐽)𝐺))
2524neeq1d 2988 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓(PHtpy‘𝐽)𝑔) ≠ ∅ ↔ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
26 eqid 2733 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}
2725, 26brab2a 5714 . . . 4 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺 ↔ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
28 df-3an 1088 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) ↔ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
2927, 28bitr4i 278 . . 3 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
3023, 29bitrdi 287 . 2 (𝐽 ∈ Top → (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)))
314, 6, 30pm5.21nii 378 1 (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wss 3898  c0 4282  {cpr 4579  cop 4583   class class class wbr 5095  {copab 5157   × cxp 5619  cfv 6488  (class class class)co 7354  Topctop 22811   Cn ccn 23142  IIcii 24798  PHtpycphtpy 24897  phcphtpc 24898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-map 8760  df-top 22812  df-topon 22829  df-cn 23145  df-phtpc 24921
This theorem is referenced by:  phtpcer  24924  phtpc01  24925  reparpht  24928  phtpcco2  24929  pcohtpylem  24949  pcohtpy  24950  pcorevlem  24956  pi1blem  24969  txsconnlem  35307  txsconn  35308  cvxsconn  35310  cvmliftpht  35385
  Copyright terms: Public domain W3C validator