MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpc Structured version   Visualization version   GIF version

Theorem isphtpc 23599
Description: The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
isphtpc (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))

Proof of Theorem isphtpc
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5031 . . 3 (𝐹( ≃ph𝐽)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ ( ≃ph𝐽))
2 df-phtpc 23597 . . . 4 ph = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅)})
32mptrcl 6754 . . 3 (⟨𝐹, 𝐺⟩ ∈ ( ≃ph𝐽) → 𝐽 ∈ Top)
41, 3sylbi 220 . 2 (𝐹( ≃ph𝐽)𝐺𝐽 ∈ Top)
5 cntop2 21846 . . 3 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
653ad2ant1 1130 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) → 𝐽 ∈ Top)
7 oveq2 7143 . . . . . . . . 9 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
87sseq2d 3947 . . . . . . . 8 (𝑗 = 𝐽 → ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ↔ {𝑓, 𝑔} ⊆ (II Cn 𝐽)))
9 vex 3444 . . . . . . . . 9 𝑓 ∈ V
10 vex 3444 . . . . . . . . 9 𝑔 ∈ V
119, 10prss 4713 . . . . . . . 8 ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ↔ {𝑓, 𝑔} ⊆ (II Cn 𝐽))
128, 11syl6bbr 292 . . . . . . 7 (𝑗 = 𝐽 → ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽))))
13 fveq2 6645 . . . . . . . . 9 (𝑗 = 𝐽 → (PHtpy‘𝑗) = (PHtpy‘𝐽))
1413oveqd 7152 . . . . . . . 8 (𝑗 = 𝐽 → (𝑓(PHtpy‘𝑗)𝑔) = (𝑓(PHtpy‘𝐽)𝑔))
1514neeq1d 3046 . . . . . . 7 (𝑗 = 𝐽 → ((𝑓(PHtpy‘𝑗)𝑔) ≠ ∅ ↔ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅))
1612, 15anbi12d 633 . . . . . 6 (𝑗 = 𝐽 → (({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅) ↔ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)))
1716opabbidv 5096 . . . . 5 (𝑗 = 𝐽 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)})
18 ovex 7168 . . . . . . 7 (II Cn 𝐽) ∈ V
1918, 18xpex 7456 . . . . . 6 ((II Cn 𝐽) × (II Cn 𝐽)) ∈ V
20 opabssxp 5607 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} ⊆ ((II Cn 𝐽) × (II Cn 𝐽))
2119, 20ssexi 5190 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} ∈ V
2217, 2, 21fvmpt 6745 . . . 4 (𝐽 ∈ Top → ( ≃ph𝐽) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)})
2322breqd 5041 . . 3 (𝐽 ∈ Top → (𝐹( ≃ph𝐽)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺))
24 oveq12 7144 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓(PHtpy‘𝐽)𝑔) = (𝐹(PHtpy‘𝐽)𝐺))
2524neeq1d 3046 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓(PHtpy‘𝐽)𝑔) ≠ ∅ ↔ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
26 eqid 2798 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}
2725, 26brab2a 5608 . . . 4 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺 ↔ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
28 df-3an 1086 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) ↔ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
2927, 28bitr4i 281 . . 3 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
3023, 29syl6bb 290 . 2 (𝐽 ∈ Top → (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)))
314, 6, 30pm5.21nii 383 1 (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wss 3881  c0 4243  {cpr 4527  cop 4531   class class class wbr 5030  {copab 5092   × cxp 5517  cfv 6324  (class class class)co 7135  Topctop 21498   Cn ccn 21829  IIcii 23480  PHtpycphtpy 23573  phcphtpc 23574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-top 21499  df-topon 21516  df-cn 21832  df-phtpc 23597
This theorem is referenced by:  phtpcer  23600  phtpc01  23601  reparpht  23603  phtpcco2  23604  pcohtpylem  23624  pcohtpy  23625  pcorevlem  23631  pi1blem  23644  txsconnlem  32600  txsconn  32601  cvxsconn  32603  cvmliftpht  32678
  Copyright terms: Public domain W3C validator