MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpc Structured version   Visualization version   GIF version

Theorem isphtpc 24900
Description: The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
isphtpc (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))

Proof of Theorem isphtpc
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5111 . . 3 (𝐹( ≃ph𝐽)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ ( ≃ph𝐽))
2 df-phtpc 24898 . . . 4 ph = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅)})
32mptrcl 6980 . . 3 (⟨𝐹, 𝐺⟩ ∈ ( ≃ph𝐽) → 𝐽 ∈ Top)
41, 3sylbi 217 . 2 (𝐹( ≃ph𝐽)𝐺𝐽 ∈ Top)
5 cntop2 23135 . . 3 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
653ad2ant1 1133 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) → 𝐽 ∈ Top)
7 oveq2 7398 . . . . . . . . 9 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
87sseq2d 3982 . . . . . . . 8 (𝑗 = 𝐽 → ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ↔ {𝑓, 𝑔} ⊆ (II Cn 𝐽)))
9 vex 3454 . . . . . . . . 9 𝑓 ∈ V
10 vex 3454 . . . . . . . . 9 𝑔 ∈ V
119, 10prss 4787 . . . . . . . 8 ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ↔ {𝑓, 𝑔} ⊆ (II Cn 𝐽))
128, 11bitr4di 289 . . . . . . 7 (𝑗 = 𝐽 → ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽))))
13 fveq2 6861 . . . . . . . . 9 (𝑗 = 𝐽 → (PHtpy‘𝑗) = (PHtpy‘𝐽))
1413oveqd 7407 . . . . . . . 8 (𝑗 = 𝐽 → (𝑓(PHtpy‘𝑗)𝑔) = (𝑓(PHtpy‘𝐽)𝑔))
1514neeq1d 2985 . . . . . . 7 (𝑗 = 𝐽 → ((𝑓(PHtpy‘𝑗)𝑔) ≠ ∅ ↔ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅))
1612, 15anbi12d 632 . . . . . 6 (𝑗 = 𝐽 → (({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅) ↔ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)))
1716opabbidv 5176 . . . . 5 (𝑗 = 𝐽 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)})
18 ovex 7423 . . . . . . 7 (II Cn 𝐽) ∈ V
1918, 18xpex 7732 . . . . . 6 ((II Cn 𝐽) × (II Cn 𝐽)) ∈ V
20 opabssxp 5734 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} ⊆ ((II Cn 𝐽) × (II Cn 𝐽))
2119, 20ssexi 5280 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} ∈ V
2217, 2, 21fvmpt 6971 . . . 4 (𝐽 ∈ Top → ( ≃ph𝐽) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)})
2322breqd 5121 . . 3 (𝐽 ∈ Top → (𝐹( ≃ph𝐽)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺))
24 oveq12 7399 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓(PHtpy‘𝐽)𝑔) = (𝐹(PHtpy‘𝐽)𝐺))
2524neeq1d 2985 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓(PHtpy‘𝐽)𝑔) ≠ ∅ ↔ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
26 eqid 2730 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}
2725, 26brab2a 5735 . . . 4 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺 ↔ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
28 df-3an 1088 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) ↔ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
2927, 28bitr4i 278 . . 3 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
3023, 29bitrdi 287 . 2 (𝐽 ∈ Top → (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)))
314, 6, 30pm5.21nii 378 1 (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wss 3917  c0 4299  {cpr 4594  cop 4598   class class class wbr 5110  {copab 5172   × cxp 5639  cfv 6514  (class class class)co 7390  Topctop 22787   Cn ccn 23118  IIcii 24775  PHtpycphtpy 24874  phcphtpc 24875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-top 22788  df-topon 22805  df-cn 23121  df-phtpc 24898
This theorem is referenced by:  phtpcer  24901  phtpc01  24902  reparpht  24905  phtpcco2  24906  pcohtpylem  24926  pcohtpy  24927  pcorevlem  24933  pi1blem  24946  txsconnlem  35234  txsconn  35235  cvxsconn  35237  cvmliftpht  35312
  Copyright terms: Public domain W3C validator