MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpycc Structured version   Visualization version   GIF version

Theorem phtpycc 24305
Description: Concatenate two path homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
phtpycc.1 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))))
phtpycc.3 (𝜑𝐹 ∈ (II Cn 𝐽))
phtpycc.4 (𝜑𝐺 ∈ (II Cn 𝐽))
phtpycc.5 (𝜑𝐻 ∈ (II Cn 𝐽))
phtpycc.6 (𝜑𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺))
phtpycc.7 (𝜑𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻))
Assertion
Ref Expression
phtpycc (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem phtpycc
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpycc.3 . 2 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpycc.5 . 2 (𝜑𝐻 ∈ (II Cn 𝐽))
3 phtpycc.1 . . 3 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))))
4 iitopon 24193 . . . 4 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
6 phtpycc.4 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
71, 6phtpyhtpy 24296 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
8 phtpycc.6 . . . 4 (𝜑𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺))
97, 8sseldd 3943 . . 3 (𝜑𝐾 ∈ (𝐹(II Htpy 𝐽)𝐺))
106, 2phtpyhtpy 24296 . . . 4 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ (𝐺(II Htpy 𝐽)𝐻))
11 phtpycc.7 . . . 4 (𝜑𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻))
1210, 11sseldd 3943 . . 3 (𝜑𝐿 ∈ (𝐺(II Htpy 𝐽)𝐻))
133, 5, 1, 6, 2, 9, 12htpycc 24294 . 2 (𝜑𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻))
14 0elunit 13340 . . . 4 0 ∈ (0[,]1)
15 simpr 485 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
16 simpr 485 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
1716breq1d 5113 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑦 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
18 simpl 483 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
1916oveq2d 7367 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑦) = (2 · 𝑠))
2018, 19oveq12d 7369 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐾(2 · 𝑦)) = (0𝐾(2 · 𝑠)))
2119oveq1d 7366 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑦) − 1) = ((2 · 𝑠) − 1))
2218, 21oveq12d 7369 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐿((2 · 𝑦) − 1)) = (0𝐿((2 · 𝑠) − 1)))
2317, 20, 22ifbieq12d 4512 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
24 ovex 7384 . . . . . 6 (0𝐾(2 · 𝑠)) ∈ V
25 ovex 7384 . . . . . 6 (0𝐿((2 · 𝑠) − 1)) ∈ V
2624, 25ifex 4534 . . . . 5 if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))) ∈ V
2723, 3, 26ovmpoa 7504 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
2814, 15, 27sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
29 simpll 765 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑)
30 elii1 24249 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) ↔ (𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)))
31 iihalf1 24245 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
3230, 31sylbir 234 . . . . . . 7 ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
3332adantll 712 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
341, 6, 8phtpyi 24298 . . . . . 6 ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) → ((0𝐾(2 · 𝑠)) = (𝐹‘0) ∧ (1𝐾(2 · 𝑠)) = (𝐹‘1)))
3529, 33, 34syl2anc 584 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((0𝐾(2 · 𝑠)) = (𝐹‘0) ∧ (1𝐾(2 · 𝑠)) = (𝐹‘1)))
3635simpld 495 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (0𝐾(2 · 𝑠)) = (𝐹‘0))
37 simpll 765 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑)
38 elii2 24250 . . . . . . . . 9 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
39 iihalf2 24247 . . . . . . . . 9 (𝑠 ∈ ((1 / 2)[,]1) → ((2 · 𝑠) − 1) ∈ (0[,]1))
4038, 39syl 17 . . . . . . . 8 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
4140adantll 712 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
426, 2, 11phtpyi 24298 . . . . . . 7 ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1)) → ((0𝐿((2 · 𝑠) − 1)) = (𝐺‘0) ∧ (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1)))
4337, 41, 42syl2anc 584 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((0𝐿((2 · 𝑠) − 1)) = (𝐺‘0) ∧ (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1)))
4443simpld 495 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (0𝐿((2 · 𝑠) − 1)) = (𝐺‘0))
451, 6, 8phtpy01 24299 . . . . . . 7 (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
4645ad2antrr 724 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
4746simpld 495 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (𝐹‘0) = (𝐺‘0))
4844, 47eqtr4d 2780 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (0𝐿((2 · 𝑠) − 1)) = (𝐹‘0))
4936, 48ifeqda 4520 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))) = (𝐹‘0))
5028, 49eqtrd 2777 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0))
51 1elunit 13341 . . . 4 1 ∈ (0[,]1)
52 simpr 485 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
5352breq1d 5113 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑦 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
54 simpl 483 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
5552oveq2d 7367 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑦) = (2 · 𝑠))
5654, 55oveq12d 7369 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐾(2 · 𝑦)) = (1𝐾(2 · 𝑠)))
5755oveq1d 7366 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑦) − 1) = ((2 · 𝑠) − 1))
5854, 57oveq12d 7369 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐿((2 · 𝑦) − 1)) = (1𝐿((2 · 𝑠) − 1)))
5953, 56, 58ifbieq12d 4512 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
60 ovex 7384 . . . . . 6 (1𝐾(2 · 𝑠)) ∈ V
61 ovex 7384 . . . . . 6 (1𝐿((2 · 𝑠) − 1)) ∈ V
6260, 61ifex 4534 . . . . 5 if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))) ∈ V
6359, 3, 62ovmpoa 7504 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
6451, 15, 63sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
6535simprd 496 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (1𝐾(2 · 𝑠)) = (𝐹‘1))
6643simprd 496 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1))
6746simprd 496 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (𝐹‘1) = (𝐺‘1))
6866, 67eqtr4d 2780 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (1𝐿((2 · 𝑠) − 1)) = (𝐹‘1))
6965, 68ifeqda 4520 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))) = (𝐹‘1))
7064, 69eqtrd 2777 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = (𝐹‘1))
711, 2, 13, 50, 70isphtpyd 24300 1 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  ifcif 4484   class class class wbr 5103  cfv 6493  (class class class)co 7351  cmpo 7353  0cc0 11009  1c1 11010   · cmul 11014  cle 11148  cmin 11343   / cdiv 11770  2c2 12166  [,]cicc 13221  TopOnctopon 22210   Cn ccn 22526  IIcii 24189   Htpy chtpy 24281  PHtpycphtpy 24282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-mulf 11089
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-of 7609  df-om 7795  df-1st 7913  df-2nd 7914  df-supp 8085  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-2o 8405  df-er 8606  df-map 8725  df-ixp 8794  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-fsupp 9264  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9404  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-7 12179  df-8 12180  df-9 12181  df-n0 12372  df-z 12458  df-dec 12577  df-uz 12722  df-q 12828  df-rp 12870  df-xneg 12987  df-xadd 12988  df-xmul 12989  df-ioo 13222  df-icc 13225  df-fz 13379  df-fzo 13522  df-seq 13861  df-exp 13922  df-hash 14184  df-cj 14943  df-re 14944  df-im 14945  df-sqrt 15079  df-abs 15080  df-struct 16978  df-sets 16995  df-slot 17013  df-ndx 17025  df-base 17043  df-ress 17072  df-plusg 17105  df-mulr 17106  df-starv 17107  df-sca 17108  df-vsca 17109  df-ip 17110  df-tset 17111  df-ple 17112  df-ds 17114  df-unif 17115  df-hom 17116  df-cco 17117  df-rest 17263  df-topn 17264  df-0g 17282  df-gsum 17283  df-topgen 17284  df-pt 17285  df-prds 17288  df-xrs 17343  df-qtop 17348  df-imas 17349  df-xps 17351  df-mre 17425  df-mrc 17426  df-acs 17428  df-mgm 18456  df-sgrp 18505  df-mnd 18516  df-submnd 18561  df-mulg 18831  df-cntz 19055  df-cmn 19522  df-psmet 20740  df-xmet 20741  df-met 20742  df-bl 20743  df-mopn 20744  df-cnfld 20749  df-top 22194  df-topon 22211  df-topsp 22233  df-bases 22247  df-cld 22321  df-cn 22529  df-cnp 22530  df-tx 22864  df-hmeo 23057  df-xms 23624  df-ms 23625  df-tms 23626  df-ii 24191  df-htpy 24284  df-phtpy 24285
This theorem is referenced by:  phtpcer  24309
  Copyright terms: Public domain W3C validator