MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpycc Structured version   Visualization version   GIF version

Theorem phtpycc 25023
Description: Concatenate two path homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
phtpycc.1 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))))
phtpycc.3 (𝜑𝐹 ∈ (II Cn 𝐽))
phtpycc.4 (𝜑𝐺 ∈ (II Cn 𝐽))
phtpycc.5 (𝜑𝐻 ∈ (II Cn 𝐽))
phtpycc.6 (𝜑𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺))
phtpycc.7 (𝜑𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻))
Assertion
Ref Expression
phtpycc (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem phtpycc
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpycc.3 . 2 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpycc.5 . 2 (𝜑𝐻 ∈ (II Cn 𝐽))
3 phtpycc.1 . . 3 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))))
4 iitopon 24905 . . . 4 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
6 phtpycc.4 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
71, 6phtpyhtpy 25014 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
8 phtpycc.6 . . . 4 (𝜑𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺))
97, 8sseldd 3984 . . 3 (𝜑𝐾 ∈ (𝐹(II Htpy 𝐽)𝐺))
106, 2phtpyhtpy 25014 . . . 4 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ (𝐺(II Htpy 𝐽)𝐻))
11 phtpycc.7 . . . 4 (𝜑𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻))
1210, 11sseldd 3984 . . 3 (𝜑𝐿 ∈ (𝐺(II Htpy 𝐽)𝐻))
133, 5, 1, 6, 2, 9, 12htpycc 25012 . 2 (𝜑𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻))
14 0elunit 13509 . . . 4 0 ∈ (0[,]1)
15 simpr 484 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
16 simpr 484 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
1716breq1d 5153 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑦 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
18 simpl 482 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
1916oveq2d 7447 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑦) = (2 · 𝑠))
2018, 19oveq12d 7449 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐾(2 · 𝑦)) = (0𝐾(2 · 𝑠)))
2119oveq1d 7446 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑦) − 1) = ((2 · 𝑠) − 1))
2218, 21oveq12d 7449 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐿((2 · 𝑦) − 1)) = (0𝐿((2 · 𝑠) − 1)))
2317, 20, 22ifbieq12d 4554 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
24 ovex 7464 . . . . . 6 (0𝐾(2 · 𝑠)) ∈ V
25 ovex 7464 . . . . . 6 (0𝐿((2 · 𝑠) − 1)) ∈ V
2624, 25ifex 4576 . . . . 5 if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))) ∈ V
2723, 3, 26ovmpoa 7588 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
2814, 15, 27sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
29 simpll 767 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑)
30 elii1 24964 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) ↔ (𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)))
31 iihalf1 24958 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
3230, 31sylbir 235 . . . . . . 7 ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
3332adantll 714 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
341, 6, 8phtpyi 25016 . . . . . 6 ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) → ((0𝐾(2 · 𝑠)) = (𝐹‘0) ∧ (1𝐾(2 · 𝑠)) = (𝐹‘1)))
3529, 33, 34syl2anc 584 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((0𝐾(2 · 𝑠)) = (𝐹‘0) ∧ (1𝐾(2 · 𝑠)) = (𝐹‘1)))
3635simpld 494 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (0𝐾(2 · 𝑠)) = (𝐹‘0))
37 simpll 767 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑)
38 elii2 24965 . . . . . . . . 9 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
39 iihalf2 24961 . . . . . . . . 9 (𝑠 ∈ ((1 / 2)[,]1) → ((2 · 𝑠) − 1) ∈ (0[,]1))
4038, 39syl 17 . . . . . . . 8 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
4140adantll 714 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
426, 2, 11phtpyi 25016 . . . . . . 7 ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1)) → ((0𝐿((2 · 𝑠) − 1)) = (𝐺‘0) ∧ (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1)))
4337, 41, 42syl2anc 584 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((0𝐿((2 · 𝑠) − 1)) = (𝐺‘0) ∧ (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1)))
4443simpld 494 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (0𝐿((2 · 𝑠) − 1)) = (𝐺‘0))
451, 6, 8phtpy01 25017 . . . . . . 7 (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
4645ad2antrr 726 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
4746simpld 494 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (𝐹‘0) = (𝐺‘0))
4844, 47eqtr4d 2780 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (0𝐿((2 · 𝑠) − 1)) = (𝐹‘0))
4936, 48ifeqda 4562 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))) = (𝐹‘0))
5028, 49eqtrd 2777 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0))
51 1elunit 13510 . . . 4 1 ∈ (0[,]1)
52 simpr 484 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
5352breq1d 5153 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑦 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
54 simpl 482 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
5552oveq2d 7447 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑦) = (2 · 𝑠))
5654, 55oveq12d 7449 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐾(2 · 𝑦)) = (1𝐾(2 · 𝑠)))
5755oveq1d 7446 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑦) − 1) = ((2 · 𝑠) − 1))
5854, 57oveq12d 7449 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐿((2 · 𝑦) − 1)) = (1𝐿((2 · 𝑠) − 1)))
5953, 56, 58ifbieq12d 4554 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
60 ovex 7464 . . . . . 6 (1𝐾(2 · 𝑠)) ∈ V
61 ovex 7464 . . . . . 6 (1𝐿((2 · 𝑠) − 1)) ∈ V
6260, 61ifex 4576 . . . . 5 if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))) ∈ V
6359, 3, 62ovmpoa 7588 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
6451, 15, 63sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
6535simprd 495 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (1𝐾(2 · 𝑠)) = (𝐹‘1))
6643simprd 495 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1))
6746simprd 495 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (𝐹‘1) = (𝐺‘1))
6866, 67eqtr4d 2780 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (1𝐿((2 · 𝑠) − 1)) = (𝐹‘1))
6965, 68ifeqda 4562 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))) = (𝐹‘1))
7064, 69eqtrd 2777 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = (𝐹‘1))
711, 2, 13, 50, 70isphtpyd 25018 1 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  cmpo 7433  0cc0 11155  1c1 11156   · cmul 11160  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  [,]cicc 13390  TopOnctopon 22916   Cn ccn 23232  IIcii 24901   Htpy chtpy 24999  PHtpycphtpy 25000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-ii 24903  df-htpy 25002  df-phtpy 25003
This theorem is referenced by:  phtpcer  25027
  Copyright terms: Public domain W3C validator