Step | Hyp | Ref
| Expression |
1 | | phtpycc.3 |
. 2
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
2 | | phtpycc.5 |
. 2
⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
3 | | phtpycc.1 |
. . 3
⊢ 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1)))) |
4 | | iitopon 23948 |
. . . 4
⊢ II ∈
(TopOn‘(0[,]1)) |
5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → II ∈
(TopOn‘(0[,]1))) |
6 | | phtpycc.4 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
7 | 1, 6 | phtpyhtpy 24051 |
. . . 4
⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
8 | | phtpycc.6 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
9 | 7, 8 | sseldd 3918 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (𝐹(II Htpy 𝐽)𝐺)) |
10 | 6, 2 | phtpyhtpy 24051 |
. . . 4
⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ (𝐺(II Htpy 𝐽)𝐻)) |
11 | | phtpycc.7 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻)) |
12 | 10, 11 | sseldd 3918 |
. . 3
⊢ (𝜑 → 𝐿 ∈ (𝐺(II Htpy 𝐽)𝐻)) |
13 | 3, 5, 1, 6, 2, 9, 12 | htpycc 24049 |
. 2
⊢ (𝜑 → 𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻)) |
14 | | 0elunit 13130 |
. . . 4
⊢ 0 ∈
(0[,]1) |
15 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1)) |
16 | | simpr 484 |
. . . . . . 7
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠) |
17 | 16 | breq1d 5080 |
. . . . . 6
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑦 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2))) |
18 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0) |
19 | 16 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑦) = (2 · 𝑠)) |
20 | 18, 19 | oveq12d 7273 |
. . . . . 6
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐾(2 · 𝑦)) = (0𝐾(2 · 𝑠))) |
21 | 19 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑦) − 1) = ((2 · 𝑠) − 1)) |
22 | 18, 21 | oveq12d 7273 |
. . . . . 6
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐿((2 · 𝑦) − 1)) = (0𝐿((2 · 𝑠) − 1))) |
23 | 17, 20, 22 | ifbieq12d 4484 |
. . . . 5
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1)))) |
24 | | ovex 7288 |
. . . . . 6
⊢ (0𝐾(2 · 𝑠)) ∈ V |
25 | | ovex 7288 |
. . . . . 6
⊢ (0𝐿((2 · 𝑠) − 1)) ∈ V |
26 | 24, 25 | ifex 4506 |
. . . . 5
⊢ if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))) ∈ V |
27 | 23, 3, 26 | ovmpoa 7406 |
. . . 4
⊢ ((0
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (0𝑀𝑠) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1)))) |
28 | 14, 15, 27 | sylancr 586 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1)))) |
29 | | simpll 763 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑) |
30 | | elii1 24004 |
. . . . . . . 8
⊢ (𝑠 ∈ (0[,](1 / 2)) ↔
(𝑠 ∈ (0[,]1) ∧
𝑠 ≤ (1 /
2))) |
31 | | iihalf1 24000 |
. . . . . . . 8
⊢ (𝑠 ∈ (0[,](1 / 2)) → (2
· 𝑠) ∈
(0[,]1)) |
32 | 30, 31 | sylbir 234 |
. . . . . . 7
⊢ ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2
· 𝑠) ∈
(0[,]1)) |
33 | 32 | adantll 710 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈
(0[,]1)) |
34 | 1, 6, 8 | phtpyi 24053 |
. . . . . 6
⊢ ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) →
((0𝐾(2 · 𝑠)) = (𝐹‘0) ∧ (1𝐾(2 · 𝑠)) = (𝐹‘1))) |
35 | 29, 33, 34 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((0𝐾(2 · 𝑠)) = (𝐹‘0) ∧ (1𝐾(2 · 𝑠)) = (𝐹‘1))) |
36 | 35 | simpld 494 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (0𝐾(2 · 𝑠)) = (𝐹‘0)) |
37 | | simpll 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑) |
38 | | elii2 24005 |
. . . . . . . . 9
⊢ ((𝑠 ∈ (0[,]1) ∧ ¬
𝑠 ≤ (1 / 2)) →
𝑠 ∈ ((1 /
2)[,]1)) |
39 | | iihalf2 24002 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((1 / 2)[,]1) → ((2
· 𝑠) − 1)
∈ (0[,]1)) |
40 | 38, 39 | syl 17 |
. . . . . . . 8
⊢ ((𝑠 ∈ (0[,]1) ∧ ¬
𝑠 ≤ (1 / 2)) → ((2
· 𝑠) − 1)
∈ (0[,]1)) |
41 | 40 | adantll 710 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2
· 𝑠) − 1)
∈ (0[,]1)) |
42 | 6, 2, 11 | phtpyi 24053 |
. . . . . . 7
⊢ ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1))
→ ((0𝐿((2 ·
𝑠) − 1)) = (𝐺‘0) ∧ (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1))) |
43 | 37, 41, 42 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((0𝐿((2 · 𝑠) − 1)) = (𝐺‘0) ∧ (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1))) |
44 | 43 | simpld 494 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (0𝐿((2 · 𝑠) − 1)) = (𝐺‘0)) |
45 | 1, 6, 8 | phtpy01 24054 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) |
46 | 45 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) |
47 | 46 | simpld 494 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (𝐹‘0) = (𝐺‘0)) |
48 | 44, 47 | eqtr4d 2781 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (0𝐿((2 · 𝑠) − 1)) = (𝐹‘0)) |
49 | 36, 48 | ifeqda 4492 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))) = (𝐹‘0)) |
50 | 28, 49 | eqtrd 2778 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0)) |
51 | | 1elunit 13131 |
. . . 4
⊢ 1 ∈
(0[,]1) |
52 | | simpr 484 |
. . . . . . 7
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠) |
53 | 52 | breq1d 5080 |
. . . . . 6
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑦 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2))) |
54 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1) |
55 | 52 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑦) = (2 · 𝑠)) |
56 | 54, 55 | oveq12d 7273 |
. . . . . 6
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐾(2 · 𝑦)) = (1𝐾(2 · 𝑠))) |
57 | 55 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑦) − 1) = ((2 · 𝑠) − 1)) |
58 | 54, 57 | oveq12d 7273 |
. . . . . 6
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐿((2 · 𝑦) − 1)) = (1𝐿((2 · 𝑠) − 1))) |
59 | 53, 56, 58 | ifbieq12d 4484 |
. . . . 5
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1)))) |
60 | | ovex 7288 |
. . . . . 6
⊢ (1𝐾(2 · 𝑠)) ∈ V |
61 | | ovex 7288 |
. . . . . 6
⊢ (1𝐿((2 · 𝑠) − 1)) ∈ V |
62 | 60, 61 | ifex 4506 |
. . . . 5
⊢ if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))) ∈ V |
63 | 59, 3, 62 | ovmpoa 7406 |
. . . 4
⊢ ((1
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (1𝑀𝑠) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1)))) |
64 | 51, 15, 63 | sylancr 586 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1)))) |
65 | 35 | simprd 495 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (1𝐾(2 · 𝑠)) = (𝐹‘1)) |
66 | 43 | simprd 495 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1)) |
67 | 46 | simprd 495 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (𝐹‘1) = (𝐺‘1)) |
68 | 66, 67 | eqtr4d 2781 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (1𝐿((2 · 𝑠) − 1)) = (𝐹‘1)) |
69 | 65, 68 | ifeqda 4492 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))) = (𝐹‘1)) |
70 | 64, 69 | eqtrd 2778 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = (𝐹‘1)) |
71 | 1, 2, 13, 50, 70 | isphtpyd 24055 |
1
⊢ (𝜑 → 𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻)) |