Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpycc Structured version   Visualization version   GIF version

Theorem phtpycc 23602
 Description: Concatenate two path homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
phtpycc.1 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))))
phtpycc.3 (𝜑𝐹 ∈ (II Cn 𝐽))
phtpycc.4 (𝜑𝐺 ∈ (II Cn 𝐽))
phtpycc.5 (𝜑𝐻 ∈ (II Cn 𝐽))
phtpycc.6 (𝜑𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺))
phtpycc.7 (𝜑𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻))
Assertion
Ref Expression
phtpycc (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem phtpycc
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpycc.3 . 2 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpycc.5 . 2 (𝜑𝐻 ∈ (II Cn 𝐽))
3 phtpycc.1 . . 3 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))))
4 iitopon 23490 . . . 4 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
6 phtpycc.4 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
71, 6phtpyhtpy 23593 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
8 phtpycc.6 . . . 4 (𝜑𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺))
97, 8sseldd 3954 . . 3 (𝜑𝐾 ∈ (𝐹(II Htpy 𝐽)𝐺))
106, 2phtpyhtpy 23593 . . . 4 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ (𝐺(II Htpy 𝐽)𝐻))
11 phtpycc.7 . . . 4 (𝜑𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻))
1210, 11sseldd 3954 . . 3 (𝜑𝐿 ∈ (𝐺(II Htpy 𝐽)𝐻))
133, 5, 1, 6, 2, 9, 12htpycc 23591 . 2 (𝜑𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻))
14 0elunit 12856 . . . 4 0 ∈ (0[,]1)
15 simpr 488 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
16 simpr 488 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
1716breq1d 5062 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑦 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
18 simpl 486 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
1916oveq2d 7165 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑦) = (2 · 𝑠))
2018, 19oveq12d 7167 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐾(2 · 𝑦)) = (0𝐾(2 · 𝑠)))
2119oveq1d 7164 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑦) − 1) = ((2 · 𝑠) − 1))
2218, 21oveq12d 7167 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐿((2 · 𝑦) − 1)) = (0𝐿((2 · 𝑠) − 1)))
2317, 20, 22ifbieq12d 4477 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
24 ovex 7182 . . . . . 6 (0𝐾(2 · 𝑠)) ∈ V
25 ovex 7182 . . . . . 6 (0𝐿((2 · 𝑠) − 1)) ∈ V
2624, 25ifex 4498 . . . . 5 if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))) ∈ V
2723, 3, 26ovmpoa 7298 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
2814, 15, 27sylancr 590 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
29 simpll 766 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑)
30 elii1 23546 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) ↔ (𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)))
31 iihalf1 23542 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
3230, 31sylbir 238 . . . . . . 7 ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
3332adantll 713 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
341, 6, 8phtpyi 23595 . . . . . 6 ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) → ((0𝐾(2 · 𝑠)) = (𝐹‘0) ∧ (1𝐾(2 · 𝑠)) = (𝐹‘1)))
3529, 33, 34syl2anc 587 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((0𝐾(2 · 𝑠)) = (𝐹‘0) ∧ (1𝐾(2 · 𝑠)) = (𝐹‘1)))
3635simpld 498 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (0𝐾(2 · 𝑠)) = (𝐹‘0))
37 simpll 766 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑)
38 elii2 23547 . . . . . . . . 9 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
39 iihalf2 23544 . . . . . . . . 9 (𝑠 ∈ ((1 / 2)[,]1) → ((2 · 𝑠) − 1) ∈ (0[,]1))
4038, 39syl 17 . . . . . . . 8 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
4140adantll 713 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
426, 2, 11phtpyi 23595 . . . . . . 7 ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1)) → ((0𝐿((2 · 𝑠) − 1)) = (𝐺‘0) ∧ (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1)))
4337, 41, 42syl2anc 587 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((0𝐿((2 · 𝑠) − 1)) = (𝐺‘0) ∧ (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1)))
4443simpld 498 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (0𝐿((2 · 𝑠) − 1)) = (𝐺‘0))
451, 6, 8phtpy01 23596 . . . . . . 7 (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
4645ad2antrr 725 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
4746simpld 498 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (𝐹‘0) = (𝐺‘0))
4844, 47eqtr4d 2862 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (0𝐿((2 · 𝑠) − 1)) = (𝐹‘0))
4936, 48ifeqda 4485 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))) = (𝐹‘0))
5028, 49eqtrd 2859 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0))
51 1elunit 12857 . . . 4 1 ∈ (0[,]1)
52 simpr 488 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
5352breq1d 5062 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑦 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
54 simpl 486 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
5552oveq2d 7165 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑦) = (2 · 𝑠))
5654, 55oveq12d 7167 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐾(2 · 𝑦)) = (1𝐾(2 · 𝑠)))
5755oveq1d 7164 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑦) − 1) = ((2 · 𝑠) − 1))
5854, 57oveq12d 7167 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐿((2 · 𝑦) − 1)) = (1𝐿((2 · 𝑠) − 1)))
5953, 56, 58ifbieq12d 4477 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
60 ovex 7182 . . . . . 6 (1𝐾(2 · 𝑠)) ∈ V
61 ovex 7182 . . . . . 6 (1𝐿((2 · 𝑠) − 1)) ∈ V
6260, 61ifex 4498 . . . . 5 if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))) ∈ V
6359, 3, 62ovmpoa 7298 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
6451, 15, 63sylancr 590 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
6535simprd 499 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (1𝐾(2 · 𝑠)) = (𝐹‘1))
6643simprd 499 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1))
6746simprd 499 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (𝐹‘1) = (𝐺‘1))
6866, 67eqtr4d 2862 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (1𝐿((2 · 𝑠) − 1)) = (𝐹‘1))
6965, 68ifeqda 4485 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))) = (𝐹‘1))
7064, 69eqtrd 2859 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = (𝐹‘1))
711, 2, 13, 50, 70isphtpyd 23597 1 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ifcif 4450   class class class wbr 5052  ‘cfv 6343  (class class class)co 7149   ∈ cmpo 7151  0cc0 10535  1c1 10536   · cmul 10540   ≤ cle 10674   − cmin 10868   / cdiv 11295  2c2 11689  [,]cicc 12738  TopOnctopon 21521   Cn ccn 21835  IIcii 23486   Htpy chtpy 23578  PHtpycphtpy 23579 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-mulf 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ioo 12739  df-icc 12742  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20090  df-xmet 20091  df-met 20092  df-bl 20093  df-mopn 20094  df-cnfld 20099  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-cn 21838  df-cnp 21839  df-tx 22173  df-hmeo 22366  df-xms 22933  df-ms 22934  df-tms 22935  df-ii 23488  df-htpy 23581  df-phtpy 23582 This theorem is referenced by:  phtpcer  23606
 Copyright terms: Public domain W3C validator