MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpycc Structured version   Visualization version   GIF version

Theorem phtpycc 23596
Description: Concatenate two path homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
phtpycc.1 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))))
phtpycc.3 (𝜑𝐹 ∈ (II Cn 𝐽))
phtpycc.4 (𝜑𝐺 ∈ (II Cn 𝐽))
phtpycc.5 (𝜑𝐻 ∈ (II Cn 𝐽))
phtpycc.6 (𝜑𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺))
phtpycc.7 (𝜑𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻))
Assertion
Ref Expression
phtpycc (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem phtpycc
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpycc.3 . 2 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpycc.5 . 2 (𝜑𝐻 ∈ (II Cn 𝐽))
3 phtpycc.1 . . 3 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))))
4 iitopon 23484 . . . 4 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
6 phtpycc.4 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
71, 6phtpyhtpy 23587 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
8 phtpycc.6 . . . 4 (𝜑𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺))
97, 8sseldd 3916 . . 3 (𝜑𝐾 ∈ (𝐹(II Htpy 𝐽)𝐺))
106, 2phtpyhtpy 23587 . . . 4 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ (𝐺(II Htpy 𝐽)𝐻))
11 phtpycc.7 . . . 4 (𝜑𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻))
1210, 11sseldd 3916 . . 3 (𝜑𝐿 ∈ (𝐺(II Htpy 𝐽)𝐻))
133, 5, 1, 6, 2, 9, 12htpycc 23585 . 2 (𝜑𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻))
14 0elunit 12847 . . . 4 0 ∈ (0[,]1)
15 simpr 488 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
16 simpr 488 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
1716breq1d 5040 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑦 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
18 simpl 486 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
1916oveq2d 7151 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑦) = (2 · 𝑠))
2018, 19oveq12d 7153 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐾(2 · 𝑦)) = (0𝐾(2 · 𝑠)))
2119oveq1d 7150 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑦) − 1) = ((2 · 𝑠) − 1))
2218, 21oveq12d 7153 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐿((2 · 𝑦) − 1)) = (0𝐿((2 · 𝑠) − 1)))
2317, 20, 22ifbieq12d 4452 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
24 ovex 7168 . . . . . 6 (0𝐾(2 · 𝑠)) ∈ V
25 ovex 7168 . . . . . 6 (0𝐿((2 · 𝑠) − 1)) ∈ V
2624, 25ifex 4473 . . . . 5 if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))) ∈ V
2723, 3, 26ovmpoa 7284 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
2814, 15, 27sylancr 590 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))))
29 simpll 766 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑)
30 elii1 23540 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) ↔ (𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)))
31 iihalf1 23536 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
3230, 31sylbir 238 . . . . . . 7 ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
3332adantll 713 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
341, 6, 8phtpyi 23589 . . . . . 6 ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) → ((0𝐾(2 · 𝑠)) = (𝐹‘0) ∧ (1𝐾(2 · 𝑠)) = (𝐹‘1)))
3529, 33, 34syl2anc 587 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((0𝐾(2 · 𝑠)) = (𝐹‘0) ∧ (1𝐾(2 · 𝑠)) = (𝐹‘1)))
3635simpld 498 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (0𝐾(2 · 𝑠)) = (𝐹‘0))
37 simpll 766 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑)
38 elii2 23541 . . . . . . . . 9 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
39 iihalf2 23538 . . . . . . . . 9 (𝑠 ∈ ((1 / 2)[,]1) → ((2 · 𝑠) − 1) ∈ (0[,]1))
4038, 39syl 17 . . . . . . . 8 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
4140adantll 713 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
426, 2, 11phtpyi 23589 . . . . . . 7 ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1)) → ((0𝐿((2 · 𝑠) − 1)) = (𝐺‘0) ∧ (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1)))
4337, 41, 42syl2anc 587 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((0𝐿((2 · 𝑠) − 1)) = (𝐺‘0) ∧ (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1)))
4443simpld 498 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (0𝐿((2 · 𝑠) − 1)) = (𝐺‘0))
451, 6, 8phtpy01 23590 . . . . . . 7 (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
4645ad2antrr 725 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
4746simpld 498 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (𝐹‘0) = (𝐺‘0))
4844, 47eqtr4d 2836 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (0𝐿((2 · 𝑠) − 1)) = (𝐹‘0))
4936, 48ifeqda 4460 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), (0𝐾(2 · 𝑠)), (0𝐿((2 · 𝑠) − 1))) = (𝐹‘0))
5028, 49eqtrd 2833 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0))
51 1elunit 12848 . . . 4 1 ∈ (0[,]1)
52 simpr 488 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
5352breq1d 5040 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑦 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
54 simpl 486 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
5552oveq2d 7151 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑦) = (2 · 𝑠))
5654, 55oveq12d 7153 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐾(2 · 𝑦)) = (1𝐾(2 · 𝑠)))
5755oveq1d 7150 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑦) − 1) = ((2 · 𝑠) − 1))
5854, 57oveq12d 7153 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐿((2 · 𝑦) − 1)) = (1𝐿((2 · 𝑠) − 1)))
5953, 56, 58ifbieq12d 4452 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1))) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
60 ovex 7168 . . . . . 6 (1𝐾(2 · 𝑠)) ∈ V
61 ovex 7168 . . . . . 6 (1𝐿((2 · 𝑠) − 1)) ∈ V
6260, 61ifex 4473 . . . . 5 if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))) ∈ V
6359, 3, 62ovmpoa 7284 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
6451, 15, 63sylancr 590 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))))
6535simprd 499 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (1𝐾(2 · 𝑠)) = (𝐹‘1))
6643simprd 499 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (1𝐿((2 · 𝑠) − 1)) = (𝐺‘1))
6746simprd 499 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (𝐹‘1) = (𝐺‘1))
6866, 67eqtr4d 2836 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (1𝐿((2 · 𝑠) − 1)) = (𝐹‘1))
6965, 68ifeqda 4460 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), (1𝐾(2 · 𝑠)), (1𝐿((2 · 𝑠) − 1))) = (𝐹‘1))
7064, 69eqtrd 2833 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑀𝑠) = (𝐹‘1))
711, 2, 13, 50, 70isphtpyd 23591 1 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  ifcif 4425   class class class wbr 5030  cfv 6324  (class class class)co 7135  cmpo 7137  0cc0 10526  1c1 10527   · cmul 10531  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  [,]cicc 12729  TopOnctopon 21515   Cn ccn 21829  IIcii 23480   Htpy chtpy 23572  PHtpycphtpy 23573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-cn 21832  df-cnp 21833  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-ii 23482  df-htpy 23575  df-phtpy 23576
This theorem is referenced by:  phtpcer  23600
  Copyright terms: Public domain W3C validator