| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpcrel | Structured version Visualization version GIF version | ||
| Description: The path homotopy relation is a relation. (Contributed by Mario Carneiro, 7-Jun-2014.) (Revised by Mario Carneiro, 7-Aug-2014.) |
| Ref | Expression |
|---|---|
| phtpcrel | ⊢ Rel ( ≃ph‘𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-phtpc 24918 | . 2 ⊢ ≃ph = (𝑥 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)}) | |
| 2 | 1 | relmptopab 7596 | 1 ⊢ Rel ( ≃ph‘𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ≠ wne 2928 ⊆ wss 3897 ∅c0 4280 {cpr 4575 Rel wrel 5619 ‘cfv 6481 (class class class)co 7346 Topctop 22808 Cn ccn 23139 IIcii 24795 PHtpycphtpy 24894 ≃phcphtpc 24895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-phtpc 24918 |
| This theorem is referenced by: phtpcer 24921 |
| Copyright terms: Public domain | W3C validator |