MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcrel Structured version   Visualization version   GIF version

Theorem phtpcrel 24899
Description: The path homotopy relation is a relation. (Contributed by Mario Carneiro, 7-Jun-2014.) (Revised by Mario Carneiro, 7-Aug-2014.)
Assertion
Ref Expression
phtpcrel Rel ( ≃ph𝐽)

Proof of Theorem phtpcrel
Dummy variables 𝑥 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-phtpc 24898 . 2 ph = (𝑥 ∈ Top ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)})
21relmptopab 7642 1 Rel ( ≃ph𝐽)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wne 2926  wss 3917  c0 4299  {cpr 4594  Rel wrel 5646  cfv 6514  (class class class)co 7390  Topctop 22787   Cn ccn 23118  IIcii 24775  PHtpycphtpy 24874  phcphtpc 24875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-phtpc 24898
This theorem is referenced by:  phtpcer  24901
  Copyright terms: Public domain W3C validator