MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcrel Structured version   Visualization version   GIF version

Theorem phtpcrel 24919
Description: The path homotopy relation is a relation. (Contributed by Mario Carneiro, 7-Jun-2014.) (Revised by Mario Carneiro, 7-Aug-2014.)
Assertion
Ref Expression
phtpcrel Rel ( ≃ph𝐽)

Proof of Theorem phtpcrel
Dummy variables 𝑥 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-phtpc 24918 . 2 ph = (𝑥 ∈ Top ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)})
21relmptopab 7596 1 Rel ( ≃ph𝐽)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wne 2928  wss 3897  c0 4280  {cpr 4575  Rel wrel 5619  cfv 6481  (class class class)co 7346  Topctop 22808   Cn ccn 23139  IIcii 24795  PHtpycphtpy 24894  phcphtpc 24895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-phtpc 24918
This theorem is referenced by:  phtpcer  24921
  Copyright terms: Public domain W3C validator