Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-pi | Structured version Visualization version GIF version |
Description: Define the constant pi, π = 3.14159..., which is the smallest positive number whose sine is zero. Definition of π in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.) |
Ref | Expression |
---|---|
df-pi | ⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpi 15704 | . 2 class π | |
2 | crp 12659 | . . . 4 class ℝ+ | |
3 | csin 15701 | . . . . . 6 class sin | |
4 | 3 | ccnv 5579 | . . . . 5 class ◡sin |
5 | cc0 10802 | . . . . . 6 class 0 | |
6 | 5 | csn 4558 | . . . . 5 class {0} |
7 | 4, 6 | cima 5583 | . . . 4 class (◡sin “ {0}) |
8 | 2, 7 | cin 3882 | . . 3 class (ℝ+ ∩ (◡sin “ {0})) |
9 | cr 10801 | . . 3 class ℝ | |
10 | clt 10940 | . . 3 class < | |
11 | 8, 9, 10 | cinf 9130 | . 2 class inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) |
12 | 1, 11 | wceq 1539 | 1 wff π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) |
Colors of variables: wff setvar class |
This definition is referenced by: pilem2 25516 pilem3 25517 |
Copyright terms: Public domain | W3C validator |