| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pi | Structured version Visualization version GIF version | ||
| Description: Define the constant pi, π = 3.14159..., which is the smallest positive number whose sine is zero. Definition of π in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.) |
| Ref | Expression |
|---|---|
| df-pi | ⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpi 16085 | . 2 class π | |
| 2 | crp 13017 | . . . 4 class ℝ+ | |
| 3 | csin 16082 | . . . . . 6 class sin | |
| 4 | 3 | ccnv 5666 | . . . . 5 class ◡sin |
| 5 | cc0 11138 | . . . . . 6 class 0 | |
| 6 | 5 | csn 4608 | . . . . 5 class {0} |
| 7 | 4, 6 | cima 5670 | . . . 4 class (◡sin “ {0}) |
| 8 | 2, 7 | cin 3932 | . . 3 class (ℝ+ ∩ (◡sin “ {0})) |
| 9 | cr 11137 | . . 3 class ℝ | |
| 10 | clt 11278 | . . 3 class < | |
| 11 | 8, 9, 10 | cinf 9464 | . 2 class inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) |
| 12 | 1, 11 | wceq 1539 | 1 wff π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pilem2 26451 pilem3 26452 |
| Copyright terms: Public domain | W3C validator |