MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem3 Structured version   Visualization version   GIF version

Theorem pilem3 26413
Description: Lemma for pire 26416, pigt2lt4 26414 and sinpi 26415. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.) (Proof shortened by BJ, 30-Jun-2022.)
Assertion
Ref Expression
pilem3 (π ∈ (2(,)4) ∧ (sin‘π) = 0)

Proof of Theorem pilem3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12312 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
3 4re 12322 . . . . 5 4 ∈ ℝ
43a1i 11 . . . 4 (⊤ → 4 ∈ ℝ)
5 0red 11236 . . . 4 (⊤ → 0 ∈ ℝ)
6 2lt4 12413 . . . . 5 2 < 4
76a1i 11 . . . 4 (⊤ → 2 < 4)
8 iccssre 13444 . . . . . . 7 ((2 ∈ ℝ ∧ 4 ∈ ℝ) → (2[,]4) ⊆ ℝ)
91, 3, 8mp2an 692 . . . . . 6 (2[,]4) ⊆ ℝ
10 ax-resscn 11184 . . . . . 6 ℝ ⊆ ℂ
119, 10sstri 3968 . . . . 5 (2[,]4) ⊆ ℂ
1211a1i 11 . . . 4 (⊤ → (2[,]4) ⊆ ℂ)
13 sincn 26404 . . . . 5 sin ∈ (ℂ–cn→ℂ)
1413a1i 11 . . . 4 (⊤ → sin ∈ (ℂ–cn→ℂ))
159sseli 3954 . . . . . 6 (𝑦 ∈ (2[,]4) → 𝑦 ∈ ℝ)
1615resincld 16159 . . . . 5 (𝑦 ∈ (2[,]4) → (sin‘𝑦) ∈ ℝ)
1716adantl 481 . . . 4 ((⊤ ∧ 𝑦 ∈ (2[,]4)) → (sin‘𝑦) ∈ ℝ)
18 sin4lt0 16211 . . . . . 6 (sin‘4) < 0
19 sincos2sgn 16210 . . . . . . 7 (0 < (sin‘2) ∧ (cos‘2) < 0)
2019simpli 483 . . . . . 6 0 < (sin‘2)
2118, 20pm3.2i 470 . . . . 5 ((sin‘4) < 0 ∧ 0 < (sin‘2))
2221a1i 11 . . . 4 (⊤ → ((sin‘4) < 0 ∧ 0 < (sin‘2)))
232, 4, 5, 7, 12, 14, 17, 22ivth2 25406 . . 3 (⊤ → ∃𝑥 ∈ (2(,)4)(sin‘𝑥) = 0)
2423mptru 1547 . 2 𝑥 ∈ (2(,)4)(sin‘𝑥) = 0
25 df-pi 16086 . . . . . . 7 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
26 inss1 4212 . . . . . . . . 9 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ+
27 rpssre 13014 . . . . . . . . 9 + ⊆ ℝ
2826, 27sstri 3968 . . . . . . . 8 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ
29 0re 11235 . . . . . . . . 9 0 ∈ ℝ
3026sseli 3954 . . . . . . . . . . 11 (𝑧 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑧 ∈ ℝ+)
3130rpge0d 13053 . . . . . . . . . 10 (𝑧 ∈ (ℝ+ ∩ (sin “ {0})) → 0 ≤ 𝑧)
3231rgen 3053 . . . . . . . . 9 𝑧 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑧
33 breq1 5122 . . . . . . . . . . 11 (𝑦 = 0 → (𝑦𝑧 ↔ 0 ≤ 𝑧))
3433ralbidv 3163 . . . . . . . . . 10 (𝑦 = 0 → (∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧 ↔ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑧))
3534rspcev 3601 . . . . . . . . 9 ((0 ∈ ℝ ∧ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧)
3629, 32, 35mp2an 692 . . . . . . . 8 𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧
37 elioore 13390 . . . . . . . . . . 11 (𝑥 ∈ (2(,)4) → 𝑥 ∈ ℝ)
3837adantr 480 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ ℝ)
39 0red 11236 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 0 ∈ ℝ)
401a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 2 ∈ ℝ)
41 2pos 12341 . . . . . . . . . . . 12 0 < 2
4241a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 0 < 2)
43 eliooord 13420 . . . . . . . . . . . . 13 (𝑥 ∈ (2(,)4) → (2 < 𝑥𝑥 < 4))
4443simpld 494 . . . . . . . . . . . 12 (𝑥 ∈ (2(,)4) → 2 < 𝑥)
4544adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 2 < 𝑥)
4639, 40, 38, 42, 45lttrd 11394 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 0 < 𝑥)
4738, 46elrpd 13046 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ ℝ+)
48 simpr 484 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (sin‘𝑥) = 0)
49 pilem1 26411 . . . . . . . . 9 (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0))
5047, 48, 49sylanbrc 583 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ (ℝ+ ∩ (sin “ {0})))
51 infrelb 12225 . . . . . . . 8 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧𝑥 ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝑥)
5228, 36, 50, 51mp3an12i 1467 . . . . . . 7 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝑥)
5325, 52eqbrtrid 5154 . . . . . 6 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ≤ 𝑥)
54 simpll 766 . . . . . . . . . . 11 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → 𝑥 ∈ (2(,)4))
55 simpr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → 𝑦 ∈ (ℝ+ ∩ (sin “ {0})))
56 pilem1 26411 . . . . . . . . . . . . 13 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑦 ∈ ℝ+ ∧ (sin‘𝑦) = 0))
5755, 56sylib 218 . . . . . . . . . . . 12 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → (𝑦 ∈ ℝ+ ∧ (sin‘𝑦) = 0))
5857simpld 494 . . . . . . . . . . 11 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → 𝑦 ∈ ℝ+)
59 simplr 768 . . . . . . . . . . 11 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → (sin‘𝑥) = 0)
6057simprd 495 . . . . . . . . . . 11 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → (sin‘𝑦) = 0)
6154, 58, 59, 60pilem2 26412 . . . . . . . . . 10 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → ((π + 𝑥) / 2) ≤ 𝑦)
6261ralrimiva 3132 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦)
6328a1i 11 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (ℝ+ ∩ (sin “ {0})) ⊆ ℝ)
6450ne0d 4317 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (ℝ+ ∩ (sin “ {0})) ≠ ∅)
6536a1i 11 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧)
66 infrecl 12222 . . . . . . . . . . . . . . 15 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
6728, 36, 66mp3an13 1454 . . . . . . . . . . . . . 14 ((ℝ+ ∩ (sin “ {0})) ≠ ∅ → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
6864, 67syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
6925, 68eqeltrid 2838 . . . . . . . . . . . 12 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ∈ ℝ)
7069, 38readdcld 11262 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π + 𝑥) ∈ ℝ)
7170rehalfcld 12486 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ((π + 𝑥) / 2) ∈ ℝ)
72 infregelb 12224 . . . . . . . . . 10 ((((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧) ∧ ((π + 𝑥) / 2) ∈ ℝ) → (((π + 𝑥) / 2) ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦))
7363, 64, 65, 71, 72syl31anc 1375 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (((π + 𝑥) / 2) ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦))
7462, 73mpbird 257 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ((π + 𝑥) / 2) ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ))
7574, 25breqtrrdi 5161 . . . . . . 7 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ((π + 𝑥) / 2) ≤ π)
7669recnd 11261 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ∈ ℂ)
7738recnd 11261 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ ℂ)
7876, 77addcomd 11435 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π + 𝑥) = (𝑥 + π))
7978oveq1d 7418 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ((π + 𝑥) / 2) = ((𝑥 + π) / 2))
8079breq1d 5129 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (((π + 𝑥) / 2) ≤ π ↔ ((𝑥 + π) / 2) ≤ π))
81 avgle2 12480 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ π ∈ ℝ) → (𝑥 ≤ π ↔ ((𝑥 + π) / 2) ≤ π))
8238, 69, 81syl2anc 584 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (𝑥 ≤ π ↔ ((𝑥 + π) / 2) ≤ π))
8380, 82bitr4d 282 . . . . . . 7 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (((π + 𝑥) / 2) ≤ π ↔ 𝑥 ≤ π))
8475, 83mpbid 232 . . . . . 6 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ≤ π)
8569, 38letri3d 11375 . . . . . 6 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π = 𝑥 ↔ (π ≤ 𝑥𝑥 ≤ π)))
8653, 84, 85mpbir2and 713 . . . . 5 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π = 𝑥)
87 simpl 482 . . . . 5 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ (2(,)4))
8886, 87eqeltrd 2834 . . . 4 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ∈ (2(,)4))
8986fveq2d 6879 . . . . 5 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (sin‘π) = (sin‘𝑥))
9089, 48eqtrd 2770 . . . 4 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (sin‘π) = 0)
9188, 90jca 511 . . 3 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
9291rexlimiva 3133 . 2 (∃𝑥 ∈ (2(,)4)(sin‘𝑥) = 0 → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
9324, 92ax-mp 5 1 (π ∈ (2(,)4) ∧ (sin‘π) = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2932  wral 3051  wrex 3060  cin 3925  wss 3926  c0 4308  {csn 4601   class class class wbr 5119  ccnv 5653  cima 5657  cfv 6530  (class class class)co 7403  infcinf 9451  cc 11125  cr 11126  0cc0 11127   + caddc 11130   < clt 11267  cle 11268   / cdiv 11892  2c2 12293  4c4 12295  +crp 13006  (,)cioo 13360  [,]cicc 13363  sincsin 16077  cosccos 16078  πcpi 16080  cnccncf 24818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818
This theorem is referenced by:  pigt2lt4  26414  sinpi  26415  pire  26416
  Copyright terms: Public domain W3C validator