MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem3 Structured version   Visualization version   GIF version

Theorem pilem3 24648
Description: Lemma for pire 24652, pigt2lt4 24650 and sinpi 24651. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.) (Proof shortened by BJ, 30-Jun-2022.)
Assertion
Ref Expression
pilem3 (π ∈ (2(,)4) ∧ (sin‘π) = 0)

Proof of Theorem pilem3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11453 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
3 4re 11464 . . . . 5 4 ∈ ℝ
43a1i 11 . . . 4 (⊤ → 4 ∈ ℝ)
5 0red 10382 . . . 4 (⊤ → 0 ∈ ℝ)
6 2lt4 11561 . . . . 5 2 < 4
76a1i 11 . . . 4 (⊤ → 2 < 4)
8 iccssre 12571 . . . . . . 7 ((2 ∈ ℝ ∧ 4 ∈ ℝ) → (2[,]4) ⊆ ℝ)
91, 3, 8mp2an 682 . . . . . 6 (2[,]4) ⊆ ℝ
10 ax-resscn 10331 . . . . . 6 ℝ ⊆ ℂ
119, 10sstri 3830 . . . . 5 (2[,]4) ⊆ ℂ
1211a1i 11 . . . 4 (⊤ → (2[,]4) ⊆ ℂ)
13 sincn 24639 . . . . 5 sin ∈ (ℂ–cn→ℂ)
1413a1i 11 . . . 4 (⊤ → sin ∈ (ℂ–cn→ℂ))
159sseli 3817 . . . . . 6 (𝑦 ∈ (2[,]4) → 𝑦 ∈ ℝ)
1615resincld 15279 . . . . 5 (𝑦 ∈ (2[,]4) → (sin‘𝑦) ∈ ℝ)
1716adantl 475 . . . 4 ((⊤ ∧ 𝑦 ∈ (2[,]4)) → (sin‘𝑦) ∈ ℝ)
18 sin4lt0 15331 . . . . . 6 (sin‘4) < 0
19 sincos2sgn 15330 . . . . . . 7 (0 < (sin‘2) ∧ (cos‘2) < 0)
2019simpli 478 . . . . . 6 0 < (sin‘2)
2118, 20pm3.2i 464 . . . . 5 ((sin‘4) < 0 ∧ 0 < (sin‘2))
2221a1i 11 . . . 4 (⊤ → ((sin‘4) < 0 ∧ 0 < (sin‘2)))
232, 4, 5, 7, 12, 14, 17, 22ivth2 23663 . . 3 (⊤ → ∃𝑥 ∈ (2(,)4)(sin‘𝑥) = 0)
2423mptru 1609 . 2 𝑥 ∈ (2(,)4)(sin‘𝑥) = 0
25 df-pi 15209 . . . . . . 7 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
26 inss1 4053 . . . . . . . . 9 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ+
27 rpssre 12148 . . . . . . . . 9 + ⊆ ℝ
2826, 27sstri 3830 . . . . . . . 8 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ
29 0re 10380 . . . . . . . . 9 0 ∈ ℝ
3026sseli 3817 . . . . . . . . . . 11 (𝑧 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑧 ∈ ℝ+)
3130rpge0d 12189 . . . . . . . . . 10 (𝑧 ∈ (ℝ+ ∩ (sin “ {0})) → 0 ≤ 𝑧)
3231rgen 3104 . . . . . . . . 9 𝑧 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑧
33 breq1 4891 . . . . . . . . . . 11 (𝑦 = 0 → (𝑦𝑧 ↔ 0 ≤ 𝑧))
3433ralbidv 3168 . . . . . . . . . 10 (𝑦 = 0 → (∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧 ↔ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑧))
3534rspcev 3511 . . . . . . . . 9 ((0 ∈ ℝ ∧ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧)
3629, 32, 35mp2an 682 . . . . . . . 8 𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧
37 elioore 12521 . . . . . . . . . . 11 (𝑥 ∈ (2(,)4) → 𝑥 ∈ ℝ)
3837adantr 474 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ ℝ)
39 0red 10382 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 0 ∈ ℝ)
401a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 2 ∈ ℝ)
41 2pos 11489 . . . . . . . . . . . 12 0 < 2
4241a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 0 < 2)
43 eliooord 12549 . . . . . . . . . . . . 13 (𝑥 ∈ (2(,)4) → (2 < 𝑥𝑥 < 4))
4443simpld 490 . . . . . . . . . . . 12 (𝑥 ∈ (2(,)4) → 2 < 𝑥)
4544adantr 474 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 2 < 𝑥)
4639, 40, 38, 42, 45lttrd 10539 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 0 < 𝑥)
4738, 46elrpd 12182 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ ℝ+)
48 simpr 479 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (sin‘𝑥) = 0)
49 pilem1 24646 . . . . . . . . 9 (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0))
5047, 48, 49sylanbrc 578 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ (ℝ+ ∩ (sin “ {0})))
51 infrelb 11366 . . . . . . . 8 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧𝑥 ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝑥)
5228, 36, 50, 51mp3an12i 1538 . . . . . . 7 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝑥)
5325, 52syl5eqbr 4923 . . . . . 6 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ≤ 𝑥)
54 simpll 757 . . . . . . . . . . 11 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → 𝑥 ∈ (2(,)4))
55 simpr 479 . . . . . . . . . . . . 13 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → 𝑦 ∈ (ℝ+ ∩ (sin “ {0})))
56 pilem1 24646 . . . . . . . . . . . . 13 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑦 ∈ ℝ+ ∧ (sin‘𝑦) = 0))
5755, 56sylib 210 . . . . . . . . . . . 12 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → (𝑦 ∈ ℝ+ ∧ (sin‘𝑦) = 0))
5857simpld 490 . . . . . . . . . . 11 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → 𝑦 ∈ ℝ+)
59 simplr 759 . . . . . . . . . . 11 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → (sin‘𝑥) = 0)
6057simprd 491 . . . . . . . . . . 11 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → (sin‘𝑦) = 0)
6154, 58, 59, 60pilem2 24647 . . . . . . . . . 10 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → ((π + 𝑥) / 2) ≤ 𝑦)
6261ralrimiva 3148 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦)
6328a1i 11 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (ℝ+ ∩ (sin “ {0})) ⊆ ℝ)
6450ne0d 4150 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (ℝ+ ∩ (sin “ {0})) ≠ ∅)
6536a1i 11 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧)
66 infrecl 11363 . . . . . . . . . . . . . . 15 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
6728, 36, 66mp3an13 1525 . . . . . . . . . . . . . 14 ((ℝ+ ∩ (sin “ {0})) ≠ ∅ → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
6864, 67syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
6925, 68syl5eqel 2863 . . . . . . . . . . . 12 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ∈ ℝ)
7069, 38readdcld 10408 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π + 𝑥) ∈ ℝ)
7170rehalfcld 11633 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ((π + 𝑥) / 2) ∈ ℝ)
72 infregelb 11365 . . . . . . . . . 10 ((((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧) ∧ ((π + 𝑥) / 2) ∈ ℝ) → (((π + 𝑥) / 2) ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦))
7363, 64, 65, 71, 72syl31anc 1441 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (((π + 𝑥) / 2) ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦))
7462, 73mpbird 249 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ((π + 𝑥) / 2) ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ))
7574, 25syl6breqr 4930 . . . . . . 7 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ((π + 𝑥) / 2) ≤ π)
7669recnd 10407 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ∈ ℂ)
7738recnd 10407 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ ℂ)
7876, 77addcomd 10580 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π + 𝑥) = (𝑥 + π))
7978oveq1d 6939 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ((π + 𝑥) / 2) = ((𝑥 + π) / 2))
8079breq1d 4898 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (((π + 𝑥) / 2) ≤ π ↔ ((𝑥 + π) / 2) ≤ π))
81 avgle2 11627 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ π ∈ ℝ) → (𝑥 ≤ π ↔ ((𝑥 + π) / 2) ≤ π))
8238, 69, 81syl2anc 579 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (𝑥 ≤ π ↔ ((𝑥 + π) / 2) ≤ π))
8380, 82bitr4d 274 . . . . . . 7 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (((π + 𝑥) / 2) ≤ π ↔ 𝑥 ≤ π))
8475, 83mpbid 224 . . . . . 6 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ≤ π)
8569, 38letri3d 10520 . . . . . 6 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π = 𝑥 ↔ (π ≤ 𝑥𝑥 ≤ π)))
8653, 84, 85mpbir2and 703 . . . . 5 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π = 𝑥)
87 simpl 476 . . . . 5 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ (2(,)4))
8886, 87eqeltrd 2859 . . . 4 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ∈ (2(,)4))
8986fveq2d 6452 . . . . 5 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (sin‘π) = (sin‘𝑥))
9089, 48eqtrd 2814 . . . 4 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (sin‘π) = 0)
9188, 90jca 507 . . 3 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
9291rexlimiva 3210 . 2 (∃𝑥 ∈ (2(,)4)(sin‘𝑥) = 0 → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
9324, 92ax-mp 5 1 (π ∈ (2(,)4) ∧ (sin‘π) = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1601  wtru 1602  wcel 2107  wne 2969  wral 3090  wrex 3091  cin 3791  wss 3792  c0 4141  {csn 4398   class class class wbr 4888  ccnv 5356  cima 5360  cfv 6137  (class class class)co 6924  infcinf 8637  cc 10272  cr 10273  0cc0 10274   + caddc 10277   < clt 10413  cle 10414   / cdiv 11034  2c2 11434  4c4 11436  +crp 12141  (,)cioo 12491  [,]cicc 12494  sincsin 15200  cosccos 15201  πcpi 15203  cnccncf 23091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-ioo 12495  df-ioc 12496  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-fl 12916  df-seq 13124  df-exp 13183  df-fac 13383  df-bc 13412  df-hash 13440  df-shft 14218  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-limsup 14614  df-clim 14631  df-rlim 14632  df-sum 14829  df-ef 15204  df-sin 15206  df-cos 15207  df-pi 15209  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-hom 16366  df-cco 16367  df-rest 16473  df-topn 16474  df-0g 16492  df-gsum 16493  df-topgen 16494  df-pt 16495  df-prds 16498  df-xrs 16552  df-qtop 16557  df-imas 16558  df-xps 16560  df-mre 16636  df-mrc 16637  df-acs 16639  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-submnd 17726  df-mulg 17932  df-cntz 18137  df-cmn 18585  df-psmet 20138  df-xmet 20139  df-met 20140  df-bl 20141  df-mopn 20142  df-fbas 20143  df-fg 20144  df-cnfld 20147  df-top 21110  df-topon 21127  df-topsp 21149  df-bases 21162  df-cld 21235  df-ntr 21236  df-cls 21237  df-nei 21314  df-lp 21352  df-perf 21353  df-cn 21443  df-cnp 21444  df-haus 21531  df-tx 21778  df-hmeo 21971  df-fil 22062  df-fm 22154  df-flim 22155  df-flf 22156  df-xms 22537  df-ms 22538  df-tms 22539  df-cncf 23093  df-limc 24071  df-dv 24072
This theorem is referenced by:  pigt2lt4  24650  sinpi  24651  pire  24652
  Copyright terms: Public domain W3C validator