Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-tan | Structured version Visualization version GIF version |
Description: Define the tangent function. We define it this way for cmpt 5158, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.) |
Ref | Expression |
---|---|
df-tan | ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctan 15784 | . 2 class tan | |
2 | vx | . . 3 setvar 𝑥 | |
3 | ccos 15783 | . . . . 5 class cos | |
4 | 3 | ccnv 5589 | . . . 4 class ◡cos |
5 | cc 10878 | . . . . 5 class ℂ | |
6 | cc0 10880 | . . . . . 6 class 0 | |
7 | 6 | csn 4562 | . . . . 5 class {0} |
8 | 5, 7 | cdif 3885 | . . . 4 class (ℂ ∖ {0}) |
9 | 4, 8 | cima 5593 | . . 3 class (◡cos “ (ℂ ∖ {0})) |
10 | 2 | cv 1538 | . . . . 5 class 𝑥 |
11 | csin 15782 | . . . . 5 class sin | |
12 | 10, 11 | cfv 6437 | . . . 4 class (sin‘𝑥) |
13 | 10, 3 | cfv 6437 | . . . 4 class (cos‘𝑥) |
14 | cdiv 11641 | . . . 4 class / | |
15 | 12, 13, 14 | co 7284 | . . 3 class ((sin‘𝑥) / (cos‘𝑥)) |
16 | 2, 9, 15 | cmpt 5158 | . 2 class (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) |
17 | 1, 16 | wceq 1539 | 1 wff tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: tanval 15846 dvtan 35836 |
Copyright terms: Public domain | W3C validator |