MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tan Structured version   Visualization version   GIF version

Definition df-tan 15709
Description: Define the tangent function. We define it this way for cmpt 5153, which requires the form (𝑥𝐴𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
df-tan tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))

Detailed syntax breakdown of Definition df-tan
StepHypRef Expression
1 ctan 15703 . 2 class tan
2 vx . . 3 setvar 𝑥
3 ccos 15702 . . . . 5 class cos
43ccnv 5579 . . . 4 class cos
5 cc 10800 . . . . 5 class
6 cc0 10802 . . . . . 6 class 0
76csn 4558 . . . . 5 class {0}
85, 7cdif 3880 . . . 4 class (ℂ ∖ {0})
94, 8cima 5583 . . 3 class (cos “ (ℂ ∖ {0}))
102cv 1538 . . . . 5 class 𝑥
11 csin 15701 . . . . 5 class sin
1210, 11cfv 6418 . . . 4 class (sin‘𝑥)
1310, 3cfv 6418 . . . 4 class (cos‘𝑥)
14 cdiv 11562 . . . 4 class /
1512, 13, 14co 7255 . . 3 class ((sin‘𝑥) / (cos‘𝑥))
162, 9, 15cmpt 5153 . 2 class (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
171, 16wceq 1539 1 wff tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  tanval  15765  dvtan  35754
  Copyright terms: Public domain W3C validator