| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tan | Structured version Visualization version GIF version | ||
| Description: Define the tangent function. We define it this way for cmpt 5225, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| df-tan | ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctan 16101 | . 2 class tan | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | ccos 16100 | . . . . 5 class cos | |
| 4 | 3 | ccnv 5684 | . . . 4 class ◡cos |
| 5 | cc 11153 | . . . . 5 class ℂ | |
| 6 | cc0 11155 | . . . . . 6 class 0 | |
| 7 | 6 | csn 4626 | . . . . 5 class {0} |
| 8 | 5, 7 | cdif 3948 | . . . 4 class (ℂ ∖ {0}) |
| 9 | 4, 8 | cima 5688 | . . 3 class (◡cos “ (ℂ ∖ {0})) |
| 10 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 11 | csin 16099 | . . . . 5 class sin | |
| 12 | 10, 11 | cfv 6561 | . . . 4 class (sin‘𝑥) |
| 13 | 10, 3 | cfv 6561 | . . . 4 class (cos‘𝑥) |
| 14 | cdiv 11920 | . . . 4 class / | |
| 15 | 12, 13, 14 | co 7431 | . . 3 class ((sin‘𝑥) / (cos‘𝑥)) |
| 16 | 2, 9, 15 | cmpt 5225 | . 2 class (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) |
| 17 | 1, 16 | wceq 1540 | 1 wff tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: tanval 16164 dvtan 37677 |
| Copyright terms: Public domain | W3C validator |