Step | Hyp | Ref
| Expression |
1 | | df-pi 15710 |
. . . 4
⊢ π =
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) |
2 | | inss1 4159 |
. . . . . . 7
⊢
(ℝ+ ∩ (◡sin
“ {0})) ⊆ ℝ+ |
3 | | rpssre 12666 |
. . . . . . 7
⊢
ℝ+ ⊆ ℝ |
4 | 2, 3 | sstri 3926 |
. . . . . 6
⊢
(ℝ+ ∩ (◡sin
“ {0})) ⊆ ℝ |
5 | 4 | a1i 11 |
. . . . 5
⊢ (𝜑 → (ℝ+ ∩
(◡sin “ {0})) ⊆
ℝ) |
6 | | 0re 10908 |
. . . . . . 7
⊢ 0 ∈
ℝ |
7 | | elinel1 4125 |
. . . . . . . . 9
⊢ (𝑦 ∈ (ℝ+
∩ (◡sin “ {0})) → 𝑦 ∈
ℝ+) |
8 | 7 | rpge0d 12705 |
. . . . . . . 8
⊢ (𝑦 ∈ (ℝ+
∩ (◡sin “ {0})) → 0 ≤
𝑦) |
9 | 8 | rgen 3073 |
. . . . . . 7
⊢
∀𝑦 ∈
(ℝ+ ∩ (◡sin
“ {0}))0 ≤ 𝑦 |
10 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) |
11 | 10 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑥 = 0 → (∀𝑦 ∈ (ℝ+
∩ (◡sin “ {0}))𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ (ℝ+ ∩ (◡sin “ {0}))0 ≤ 𝑦)) |
12 | 11 | rspcev 3552 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ ∀𝑦 ∈ (ℝ+ ∩ (◡sin “ {0}))0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡sin “ {0}))𝑥 ≤ 𝑦) |
13 | 6, 9, 12 | mp2an 688 |
. . . . . 6
⊢
∃𝑥 ∈
ℝ ∀𝑦 ∈
(ℝ+ ∩ (◡sin
“ {0}))𝑥 ≤ 𝑦 |
14 | 13 | a1i 11 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡sin “ {0}))𝑥 ≤ 𝑦) |
15 | | 2re 11977 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
16 | | pilem2.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
17 | 16 | rpred 12701 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
18 | | remulcl 10887 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ 𝐵
∈ ℝ) → (2 · 𝐵) ∈ ℝ) |
19 | 15, 17, 18 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → (2 · 𝐵) ∈
ℝ) |
20 | | pilem2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (2(,)4)) |
21 | | elioore 13038 |
. . . . . . . . 9
⊢ (𝐴 ∈ (2(,)4) → 𝐴 ∈
ℝ) |
22 | 20, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
23 | 19, 22 | resubcld 11333 |
. . . . . . 7
⊢ (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ) |
24 | | 4re 11987 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ |
25 | 24 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 4 ∈
ℝ) |
26 | | eliooord 13067 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (2(,)4) → (2 <
𝐴 ∧ 𝐴 < 4)) |
27 | 20, 26 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (2 < 𝐴 ∧ 𝐴 < 4)) |
28 | 27 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 < 4) |
29 | | 2t2e4 12067 |
. . . . . . . . . 10
⊢ (2
· 2) = 4 |
30 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℝ) |
31 | | 0red 10909 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ∈
ℝ) |
32 | | 2pos 12006 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
2 |
33 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 < 2) |
34 | 27 | simpld 494 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2 < 𝐴) |
35 | 31, 30, 22, 33, 34 | lttrd 11066 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < 𝐴) |
36 | 22, 35 | elrpd 12698 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
37 | | pilem2.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (sin‘𝐴) = 0) |
38 | | pilem1 25515 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (ℝ+
∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+
∧ (sin‘𝐴) =
0)) |
39 | 36, 37, 38 | sylanbrc 582 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ (ℝ+ ∩ (◡sin “ {0}))) |
40 | 39 | ne0d 4266 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ+ ∩
(◡sin “ {0})) ≠
∅) |
41 | | infrecl 11887 |
. . . . . . . . . . . . . 14
⊢
(((ℝ+ ∩ (◡sin “ {0})) ⊆ ℝ ∧
(ℝ+ ∩ (◡sin
“ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡sin “ {0}))𝑥 ≤ 𝑦) → inf((ℝ+ ∩
(◡sin “ {0})), ℝ, < )
∈ ℝ) |
42 | 4, 13, 41 | mp3an13 1450 |
. . . . . . . . . . . . 13
⊢
((ℝ+ ∩ (◡sin “ {0})) ≠ ∅ →
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ∈ ℝ) |
43 | 40, 42 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → inf((ℝ+
∩ (◡sin “ {0})), ℝ,
< ) ∈ ℝ) |
44 | | pilem1 25515 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (ℝ+
∩ (◡sin “ {0})) ↔ (𝑥 ∈ ℝ+
∧ (sin‘𝑥) =
0)) |
45 | | rpre 12667 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
47 | | letric 11005 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℝ ∧ 𝑥
∈ ℝ) → (2 ≤ 𝑥 ∨ 𝑥 ≤ 2)) |
48 | 15, 46, 47 | sylancr 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2 ≤
𝑥 ∨ 𝑥 ≤ 2)) |
49 | 48 | ord 860 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (¬ 2
≤ 𝑥 → 𝑥 ≤ 2)) |
50 | 45 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈
ℝ) |
51 | | rpgt0 12671 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ+
→ 0 < 𝑥) |
52 | 51 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < 𝑥) |
53 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ≤ 2) |
54 | | 0xr 10953 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ∈
ℝ* |
55 | | elioc2 13071 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((0
∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 ≤ 2))) |
56 | 54, 15, 55 | mp2an 688 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 <
𝑥 ∧ 𝑥 ≤ 2)) |
57 | 50, 52, 53, 56 | syl3anbrc 1341 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈
(0(,]2)) |
58 | | sin02gt0 15829 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (0(,]2) → 0 <
(sin‘𝑥)) |
59 | 57, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 <
(sin‘𝑥)) |
60 | 59 | gt0ne0d 11469 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → (sin‘𝑥) ≠ 0) |
61 | 60 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ≤ 2 → (sin‘𝑥) ≠ 0)) |
62 | 49, 61 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (¬ 2
≤ 𝑥 →
(sin‘𝑥) ≠
0)) |
63 | 62 | necon4bd 2962 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((sin‘𝑥) = 0 → 2
≤ 𝑥)) |
64 | 63 | expimpd 453 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑥 ∈ ℝ+ ∧
(sin‘𝑥) = 0) → 2
≤ 𝑥)) |
65 | 44, 64 | syl5bi 241 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ (ℝ+ ∩ (◡sin “ {0})) → 2 ≤ 𝑥)) |
66 | 65 | ralrimiv 3106 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ (ℝ+ ∩ (◡sin “ {0}))2 ≤ 𝑥) |
67 | | infregelb 11889 |
. . . . . . . . . . . . . 14
⊢
((((ℝ+ ∩ (◡sin “ {0})) ⊆ ℝ ∧
(ℝ+ ∩ (◡sin
“ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡sin “ {0}))𝑥 ≤ 𝑦) ∧ 2 ∈ ℝ) → (2 ≤
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (◡sin “ {0}))2 ≤ 𝑥)) |
68 | 5, 40, 14, 30, 67 | syl31anc 1371 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 ≤
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (◡sin “ {0}))2 ≤ 𝑥)) |
69 | 66, 68 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ≤
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < )) |
70 | | pilem2.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (sin‘𝐵) = 0) |
71 | | pilem1 25515 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (ℝ+
∩ (◡sin “ {0})) ↔ (𝐵 ∈ ℝ+
∧ (sin‘𝐵) =
0)) |
72 | 16, 70, 71 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ (ℝ+ ∩ (◡sin “ {0}))) |
73 | | infrelb 11890 |
. . . . . . . . . . . . 13
⊢
(((ℝ+ ∩ (◡sin “ {0})) ⊆ ℝ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈
(ℝ+ ∩ (◡sin
“ {0}))𝑥 ≤ 𝑦 ∧ 𝐵 ∈ (ℝ+ ∩ (◡sin “ {0}))) →
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ≤ 𝐵) |
74 | 5, 14, 72, 73 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (𝜑 → inf((ℝ+
∩ (◡sin “ {0})), ℝ,
< ) ≤ 𝐵) |
75 | 30, 43, 17, 69, 74 | letrd 11062 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ 𝐵) |
76 | 15, 32 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (2 ∈
ℝ ∧ 0 < 2) |
77 | 76 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 ∈ ℝ ∧ 0
< 2)) |
78 | | lemul2 11758 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ 𝐵
∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2
· 𝐵))) |
79 | 30, 17, 77, 78 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 ·
𝐵))) |
80 | 75, 79 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 2) ≤ (2
· 𝐵)) |
81 | 29, 80 | eqbrtrrid 5106 |
. . . . . . . . 9
⊢ (𝜑 → 4 ≤ (2 · 𝐵)) |
82 | 22, 25, 19, 28, 81 | ltletrd 11065 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 < (2 · 𝐵)) |
83 | 22, 19 | posdifd 11492 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 < (2 · 𝐵) ↔ 0 < ((2 · 𝐵) − 𝐴))) |
84 | 82, 83 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → 0 < ((2 · 𝐵) − 𝐴)) |
85 | 23, 84 | elrpd 12698 |
. . . . . 6
⊢ (𝜑 → ((2 · 𝐵) − 𝐴) ∈
ℝ+) |
86 | 19 | recnd 10934 |
. . . . . . . 8
⊢ (𝜑 → (2 · 𝐵) ∈
ℂ) |
87 | 22 | recnd 10934 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
88 | | sinsub 15805 |
. . . . . . . 8
⊢ (((2
· 𝐵) ∈ ℂ
∧ 𝐴 ∈ ℂ)
→ (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2
· 𝐵)) ·
(sin‘𝐴)))) |
89 | 86, 87, 88 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (sin‘((2 ·
𝐵) − 𝐴)) = (((sin‘(2 ·
𝐵)) ·
(cos‘𝐴)) −
((cos‘(2 · 𝐵))
· (sin‘𝐴)))) |
90 | 17 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ ℂ) |
91 | | sin2t 15814 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℂ →
(sin‘(2 · 𝐵))
= (2 · ((sin‘𝐵) · (cos‘𝐵)))) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (sin‘(2 ·
𝐵)) = (2 ·
((sin‘𝐵) ·
(cos‘𝐵)))) |
93 | 70 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = (0 ·
(cos‘𝐵))) |
94 | 90 | coscld 15768 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (cos‘𝐵) ∈
ℂ) |
95 | 94 | mul02d 11103 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0 ·
(cos‘𝐵)) =
0) |
96 | 93, 95 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = 0) |
97 | 96 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 ·
((sin‘𝐵) ·
(cos‘𝐵))) = (2
· 0)) |
98 | | 2t0e0 12072 |
. . . . . . . . . . . . 13
⊢ (2
· 0) = 0 |
99 | 97, 98 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 ·
((sin‘𝐵) ·
(cos‘𝐵))) =
0) |
100 | 92, 99 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → (sin‘(2 ·
𝐵)) = 0) |
101 | 100 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝜑 → ((sin‘(2 ·
𝐵)) ·
(cos‘𝐴)) = (0
· (cos‘𝐴))) |
102 | 87 | coscld 15768 |
. . . . . . . . . . 11
⊢ (𝜑 → (cos‘𝐴) ∈
ℂ) |
103 | 102 | mul02d 11103 |
. . . . . . . . . 10
⊢ (𝜑 → (0 ·
(cos‘𝐴)) =
0) |
104 | 101, 103 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((sin‘(2 ·
𝐵)) ·
(cos‘𝐴)) =
0) |
105 | 37 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝜑 → ((cos‘(2 ·
𝐵)) ·
(sin‘𝐴)) =
((cos‘(2 · 𝐵))
· 0)) |
106 | 86 | coscld 15768 |
. . . . . . . . . . 11
⊢ (𝜑 → (cos‘(2 ·
𝐵)) ∈
ℂ) |
107 | 106 | mul01d 11104 |
. . . . . . . . . 10
⊢ (𝜑 → ((cos‘(2 ·
𝐵)) · 0) =
0) |
108 | 105, 107 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((cos‘(2 ·
𝐵)) ·
(sin‘𝐴)) =
0) |
109 | 104, 108 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝜑 → (((sin‘(2 ·
𝐵)) ·
(cos‘𝐴)) −
((cos‘(2 · 𝐵))
· (sin‘𝐴))) =
(0 − 0)) |
110 | | 0m0e0 12023 |
. . . . . . . 8
⊢ (0
− 0) = 0 |
111 | 109, 110 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝜑 → (((sin‘(2 ·
𝐵)) ·
(cos‘𝐴)) −
((cos‘(2 · 𝐵))
· (sin‘𝐴))) =
0) |
112 | 89, 111 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (sin‘((2 ·
𝐵) − 𝐴)) = 0) |
113 | | pilem1 25515 |
. . . . . 6
⊢ (((2
· 𝐵) − 𝐴) ∈ (ℝ+
∩ (◡sin “ {0})) ↔ (((2
· 𝐵) − 𝐴) ∈ ℝ+
∧ (sin‘((2 · 𝐵) − 𝐴)) = 0)) |
114 | 85, 112, 113 | sylanbrc 582 |
. . . . 5
⊢ (𝜑 → ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (◡sin “ {0}))) |
115 | | infrelb 11890 |
. . . . 5
⊢
(((ℝ+ ∩ (◡sin “ {0})) ⊆ ℝ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈
(ℝ+ ∩ (◡sin
“ {0}))𝑥 ≤ 𝑦 ∧ ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (◡sin “ {0}))) →
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴)) |
116 | 5, 14, 114, 115 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → inf((ℝ+
∩ (◡sin “ {0})), ℝ,
< ) ≤ ((2 · 𝐵)
− 𝐴)) |
117 | 1, 116 | eqbrtrid 5105 |
. . 3
⊢ (𝜑 → π ≤ ((2 ·
𝐵) − 𝐴)) |
118 | 1, 43 | eqeltrid 2843 |
. . . 4
⊢ (𝜑 → π ∈
ℝ) |
119 | | leaddsub 11381 |
. . . 4
⊢ ((π
∈ ℝ ∧ 𝐴
∈ ℝ ∧ (2 · 𝐵) ∈ ℝ) → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 ·
𝐵) − 𝐴))) |
120 | 118, 22, 19, 119 | syl3anc 1369 |
. . 3
⊢ (𝜑 → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴))) |
121 | 117, 120 | mpbird 256 |
. 2
⊢ (𝜑 → (π + 𝐴) ≤ (2 · 𝐵)) |
122 | 118, 22 | readdcld 10935 |
. . 3
⊢ (𝜑 → (π + 𝐴) ∈ ℝ) |
123 | | ledivmul 11781 |
. . 3
⊢ (((π +
𝐴) ∈ ℝ ∧
𝐵 ∈ ℝ ∧ (2
∈ ℝ ∧ 0 < 2)) → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵))) |
124 | 122, 17, 77, 123 | syl3anc 1369 |
. 2
⊢ (𝜑 → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵))) |
125 | 121, 124 | mpbird 256 |
1
⊢ (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵) |