MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem2 Structured version   Visualization version   GIF version

Theorem pilem2 25516
Description: Lemma for pire 25520, pigt2lt4 25518 and sinpi 25519. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
pilem2.1 (𝜑𝐴 ∈ (2(,)4))
pilem2.2 (𝜑𝐵 ∈ ℝ+)
pilem2.3 (𝜑 → (sin‘𝐴) = 0)
pilem2.4 (𝜑 → (sin‘𝐵) = 0)
Assertion
Ref Expression
pilem2 (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)

Proof of Theorem pilem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pi 15710 . . . 4 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
2 inss1 4159 . . . . . . 7 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ+
3 rpssre 12666 . . . . . . 7 + ⊆ ℝ
42, 3sstri 3926 . . . . . 6 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ
54a1i 11 . . . . 5 (𝜑 → (ℝ+ ∩ (sin “ {0})) ⊆ ℝ)
6 0re 10908 . . . . . . 7 0 ∈ ℝ
7 elinel1 4125 . . . . . . . . 9 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑦 ∈ ℝ+)
87rpge0d 12705 . . . . . . . 8 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) → 0 ≤ 𝑦)
98rgen 3073 . . . . . . 7 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦
10 breq1 5073 . . . . . . . . 9 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
1110ralbidv 3120 . . . . . . . 8 (𝑥 = 0 → (∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦 ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦))
1211rspcev 3552 . . . . . . 7 ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦)
136, 9, 12mp2an 688 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦
1413a1i 11 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦)
15 2re 11977 . . . . . . . . 9 2 ∈ ℝ
16 pilem2.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
1716rpred 12701 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
18 remulcl 10887 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
1915, 17, 18sylancr 586 . . . . . . . 8 (𝜑 → (2 · 𝐵) ∈ ℝ)
20 pilem2.1 . . . . . . . . 9 (𝜑𝐴 ∈ (2(,)4))
21 elioore 13038 . . . . . . . . 9 (𝐴 ∈ (2(,)4) → 𝐴 ∈ ℝ)
2220, 21syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2319, 22resubcld 11333 . . . . . . 7 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ)
24 4re 11987 . . . . . . . . . 10 4 ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
26 eliooord 13067 . . . . . . . . . . 11 (𝐴 ∈ (2(,)4) → (2 < 𝐴𝐴 < 4))
2720, 26syl 17 . . . . . . . . . 10 (𝜑 → (2 < 𝐴𝐴 < 4))
2827simprd 495 . . . . . . . . 9 (𝜑𝐴 < 4)
29 2t2e4 12067 . . . . . . . . . 10 (2 · 2) = 4
3015a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
31 0red 10909 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ ℝ)
32 2pos 12006 . . . . . . . . . . . . . . . . . 18 0 < 2
3332a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 2)
3427simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 < 𝐴)
3531, 30, 22, 33, 34lttrd 11066 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝐴)
3622, 35elrpd 12698 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ+)
37 pilem2.3 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘𝐴) = 0)
38 pilem1 25515 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0))
3936, 37, 38sylanbrc 582 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (ℝ+ ∩ (sin “ {0})))
4039ne0d 4266 . . . . . . . . . . . . 13 (𝜑 → (ℝ+ ∩ (sin “ {0})) ≠ ∅)
41 infrecl 11887 . . . . . . . . . . . . . 14 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
424, 13, 41mp3an13 1450 . . . . . . . . . . . . 13 ((ℝ+ ∩ (sin “ {0})) ≠ ∅ → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
4340, 42syl 17 . . . . . . . . . . . 12 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
44 pilem1 25515 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0))
45 rpre 12667 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4645adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
47 letric 11005 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 ≤ 𝑥𝑥 ≤ 2))
4815, 46, 47sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → (2 ≤ 𝑥𝑥 ≤ 2))
4948ord 860 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (¬ 2 ≤ 𝑥𝑥 ≤ 2))
5045ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈ ℝ)
51 rpgt0 12671 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ+ → 0 < 𝑥)
5251ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < 𝑥)
53 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ≤ 2)
54 0xr 10953 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
55 elioc2 13071 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2)))
5654, 15, 55mp2an 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2))
5750, 52, 53, 56syl3anbrc 1341 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈ (0(,]2))
58 sin02gt0 15829 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0(,]2) → 0 < (sin‘𝑥))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < (sin‘𝑥))
6059gt0ne0d 11469 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → (sin‘𝑥) ≠ 0)
6160ex 412 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ≤ 2 → (sin‘𝑥) ≠ 0))
6249, 61syld 47 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (¬ 2 ≤ 𝑥 → (sin‘𝑥) ≠ 0))
6362necon4bd 2962 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → ((sin‘𝑥) = 0 → 2 ≤ 𝑥))
6463expimpd 453 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0) → 2 ≤ 𝑥))
6544, 64syl5bi 241 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) → 2 ≤ 𝑥))
6665ralrimiv 3106 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥)
67 infregelb 11889 . . . . . . . . . . . . . 14 ((((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦) ∧ 2 ∈ ℝ) → (2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥))
685, 40, 14, 30, 67syl31anc 1371 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥))
6966, 68mpbird 256 . . . . . . . . . . . 12 (𝜑 → 2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ))
70 pilem2.4 . . . . . . . . . . . . . 14 (𝜑 → (sin‘𝐵) = 0)
71 pilem1 25515 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐵 ∈ ℝ+ ∧ (sin‘𝐵) = 0))
7216, 70, 71sylanbrc 582 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (ℝ+ ∩ (sin “ {0})))
73 infrelb 11890 . . . . . . . . . . . . 13 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦𝐵 ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝐵)
745, 14, 72, 73syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝐵)
7530, 43, 17, 69, 74letrd 11062 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝐵)
7615, 32pm3.2i 470 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
78 lemul2 11758 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 · 𝐵)))
7930, 17, 77, 78syl3anc 1369 . . . . . . . . . . 11 (𝜑 → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 · 𝐵)))
8075, 79mpbid 231 . . . . . . . . . 10 (𝜑 → (2 · 2) ≤ (2 · 𝐵))
8129, 80eqbrtrrid 5106 . . . . . . . . 9 (𝜑 → 4 ≤ (2 · 𝐵))
8222, 25, 19, 28, 81ltletrd 11065 . . . . . . . 8 (𝜑𝐴 < (2 · 𝐵))
8322, 19posdifd 11492 . . . . . . . 8 (𝜑 → (𝐴 < (2 · 𝐵) ↔ 0 < ((2 · 𝐵) − 𝐴)))
8482, 83mpbid 231 . . . . . . 7 (𝜑 → 0 < ((2 · 𝐵) − 𝐴))
8523, 84elrpd 12698 . . . . . 6 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ+)
8619recnd 10934 . . . . . . . 8 (𝜑 → (2 · 𝐵) ∈ ℂ)
8722recnd 10934 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
88 sinsub 15805 . . . . . . . 8 (((2 · 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))))
8986, 87, 88syl2anc 583 . . . . . . 7 (𝜑 → (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))))
9017recnd 10934 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
91 sin2t 15814 . . . . . . . . . . . . 13 (𝐵 ∈ ℂ → (sin‘(2 · 𝐵)) = (2 · ((sin‘𝐵) · (cos‘𝐵))))
9290, 91syl 17 . . . . . . . . . . . 12 (𝜑 → (sin‘(2 · 𝐵)) = (2 · ((sin‘𝐵) · (cos‘𝐵))))
9370oveq1d 7270 . . . . . . . . . . . . . . 15 (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = (0 · (cos‘𝐵)))
9490coscld 15768 . . . . . . . . . . . . . . . 16 (𝜑 → (cos‘𝐵) ∈ ℂ)
9594mul02d 11103 . . . . . . . . . . . . . . 15 (𝜑 → (0 · (cos‘𝐵)) = 0)
9693, 95eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = 0)
9796oveq2d 7271 . . . . . . . . . . . . 13 (𝜑 → (2 · ((sin‘𝐵) · (cos‘𝐵))) = (2 · 0))
98 2t0e0 12072 . . . . . . . . . . . . 13 (2 · 0) = 0
9997, 98eqtrdi 2795 . . . . . . . . . . . 12 (𝜑 → (2 · ((sin‘𝐵) · (cos‘𝐵))) = 0)
10092, 99eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (sin‘(2 · 𝐵)) = 0)
101100oveq1d 7270 . . . . . . . . . 10 (𝜑 → ((sin‘(2 · 𝐵)) · (cos‘𝐴)) = (0 · (cos‘𝐴)))
10287coscld 15768 . . . . . . . . . . 11 (𝜑 → (cos‘𝐴) ∈ ℂ)
103102mul02d 11103 . . . . . . . . . 10 (𝜑 → (0 · (cos‘𝐴)) = 0)
104101, 103eqtrd 2778 . . . . . . . . 9 (𝜑 → ((sin‘(2 · 𝐵)) · (cos‘𝐴)) = 0)
10537oveq2d 7271 . . . . . . . . . 10 (𝜑 → ((cos‘(2 · 𝐵)) · (sin‘𝐴)) = ((cos‘(2 · 𝐵)) · 0))
10686coscld 15768 . . . . . . . . . . 11 (𝜑 → (cos‘(2 · 𝐵)) ∈ ℂ)
107106mul01d 11104 . . . . . . . . . 10 (𝜑 → ((cos‘(2 · 𝐵)) · 0) = 0)
108105, 107eqtrd 2778 . . . . . . . . 9 (𝜑 → ((cos‘(2 · 𝐵)) · (sin‘𝐴)) = 0)
109104, 108oveq12d 7273 . . . . . . . 8 (𝜑 → (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))) = (0 − 0))
110 0m0e0 12023 . . . . . . . 8 (0 − 0) = 0
111109, 110eqtrdi 2795 . . . . . . 7 (𝜑 → (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))) = 0)
11289, 111eqtrd 2778 . . . . . 6 (𝜑 → (sin‘((2 · 𝐵) − 𝐴)) = 0)
113 pilem1 25515 . . . . . 6 (((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0})) ↔ (((2 · 𝐵) − 𝐴) ∈ ℝ+ ∧ (sin‘((2 · 𝐵) − 𝐴)) = 0))
11485, 112, 113sylanbrc 582 . . . . 5 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0})))
115 infrelb 11890 . . . . 5 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦 ∧ ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴))
1165, 14, 114, 115syl3anc 1369 . . . 4 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴))
1171, 116eqbrtrid 5105 . . 3 (𝜑 → π ≤ ((2 · 𝐵) − 𝐴))
1181, 43eqeltrid 2843 . . . 4 (𝜑 → π ∈ ℝ)
119 leaddsub 11381 . . . 4 ((π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ) → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴)))
120118, 22, 19, 119syl3anc 1369 . . 3 (𝜑 → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴)))
121117, 120mpbird 256 . 2 (𝜑 → (π + 𝐴) ≤ (2 · 𝐵))
122118, 22readdcld 10935 . . 3 (𝜑 → (π + 𝐴) ∈ ℝ)
123 ledivmul 11781 . . 3 (((π + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵)))
124122, 17, 77, 123syl3anc 1369 . 2 (𝜑 → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵)))
125121, 124mpbird 256 1 (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  ccnv 5579  cima 5583  cfv 6418  (class class class)co 7255  infcinf 9130  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  4c4 11960  +crp 12659  (,)cioo 13008  (,]cioc 13009  sincsin 15701  cosccos 15702  πcpi 15704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioo 13012  df-ioc 13013  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710
This theorem is referenced by:  pilem3  25517
  Copyright terms: Public domain W3C validator