MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem2 Structured version   Visualization version   GIF version

Theorem pilem2 26360
Description: Lemma for pire 26364, pigt2lt4 26362 and sinpi 26363. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
pilem2.1 (𝜑𝐴 ∈ (2(,)4))
pilem2.2 (𝜑𝐵 ∈ ℝ+)
pilem2.3 (𝜑 → (sin‘𝐴) = 0)
pilem2.4 (𝜑 → (sin‘𝐵) = 0)
Assertion
Ref Expression
pilem2 (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)

Proof of Theorem pilem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pi 15979 . . . 4 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
2 inss1 4188 . . . . . . 7 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ+
3 rpssre 12901 . . . . . . 7 + ⊆ ℝ
42, 3sstri 3945 . . . . . 6 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ
54a1i 11 . . . . 5 (𝜑 → (ℝ+ ∩ (sin “ {0})) ⊆ ℝ)
6 0re 11117 . . . . . . 7 0 ∈ ℝ
7 elinel1 4152 . . . . . . . . 9 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑦 ∈ ℝ+)
87rpge0d 12941 . . . . . . . 8 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) → 0 ≤ 𝑦)
98rgen 3046 . . . . . . 7 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦
10 breq1 5095 . . . . . . . . 9 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
1110ralbidv 3152 . . . . . . . 8 (𝑥 = 0 → (∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦 ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦))
1211rspcev 3577 . . . . . . 7 ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦)
136, 9, 12mp2an 692 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦
1413a1i 11 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦)
15 2re 12202 . . . . . . . . 9 2 ∈ ℝ
16 pilem2.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
1716rpred 12937 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
18 remulcl 11094 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
1915, 17, 18sylancr 587 . . . . . . . 8 (𝜑 → (2 · 𝐵) ∈ ℝ)
20 pilem2.1 . . . . . . . . 9 (𝜑𝐴 ∈ (2(,)4))
21 elioore 13278 . . . . . . . . 9 (𝐴 ∈ (2(,)4) → 𝐴 ∈ ℝ)
2220, 21syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2319, 22resubcld 11548 . . . . . . 7 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ)
24 4re 12212 . . . . . . . . . 10 4 ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
26 eliooord 13308 . . . . . . . . . . 11 (𝐴 ∈ (2(,)4) → (2 < 𝐴𝐴 < 4))
2720, 26syl 17 . . . . . . . . . 10 (𝜑 → (2 < 𝐴𝐴 < 4))
2827simprd 495 . . . . . . . . 9 (𝜑𝐴 < 4)
29 2t2e4 12287 . . . . . . . . . 10 (2 · 2) = 4
3015a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
31 0red 11118 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ ℝ)
32 2pos 12231 . . . . . . . . . . . . . . . . . 18 0 < 2
3332a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 2)
3427simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 < 𝐴)
3531, 30, 22, 33, 34lttrd 11277 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝐴)
3622, 35elrpd 12934 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ+)
37 pilem2.3 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘𝐴) = 0)
38 pilem1 26359 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0))
3936, 37, 38sylanbrc 583 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (ℝ+ ∩ (sin “ {0})))
4039ne0d 4293 . . . . . . . . . . . . 13 (𝜑 → (ℝ+ ∩ (sin “ {0})) ≠ ∅)
41 infrecl 12107 . . . . . . . . . . . . . 14 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
424, 13, 41mp3an13 1454 . . . . . . . . . . . . 13 ((ℝ+ ∩ (sin “ {0})) ≠ ∅ → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
4340, 42syl 17 . . . . . . . . . . . 12 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
44 pilem1 26359 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0))
45 rpre 12902 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4645adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
47 letric 11216 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 ≤ 𝑥𝑥 ≤ 2))
4815, 46, 47sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → (2 ≤ 𝑥𝑥 ≤ 2))
4948ord 864 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (¬ 2 ≤ 𝑥𝑥 ≤ 2))
5045ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈ ℝ)
51 rpgt0 12906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ+ → 0 < 𝑥)
5251ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < 𝑥)
53 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ≤ 2)
54 0xr 11162 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
55 elioc2 13312 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2)))
5654, 15, 55mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2))
5750, 52, 53, 56syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈ (0(,]2))
58 sin02gt0 16101 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0(,]2) → 0 < (sin‘𝑥))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < (sin‘𝑥))
6059gt0ne0d 11684 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → (sin‘𝑥) ≠ 0)
6160ex 412 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ≤ 2 → (sin‘𝑥) ≠ 0))
6249, 61syld 47 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (¬ 2 ≤ 𝑥 → (sin‘𝑥) ≠ 0))
6362necon4bd 2945 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → ((sin‘𝑥) = 0 → 2 ≤ 𝑥))
6463expimpd 453 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0) → 2 ≤ 𝑥))
6544, 64biimtrid 242 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) → 2 ≤ 𝑥))
6665ralrimiv 3120 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥)
67 infregelb 12109 . . . . . . . . . . . . . 14 ((((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦) ∧ 2 ∈ ℝ) → (2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥))
685, 40, 14, 30, 67syl31anc 1375 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥))
6966, 68mpbird 257 . . . . . . . . . . . 12 (𝜑 → 2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ))
70 pilem2.4 . . . . . . . . . . . . . 14 (𝜑 → (sin‘𝐵) = 0)
71 pilem1 26359 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐵 ∈ ℝ+ ∧ (sin‘𝐵) = 0))
7216, 70, 71sylanbrc 583 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (ℝ+ ∩ (sin “ {0})))
73 infrelb 12110 . . . . . . . . . . . . 13 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦𝐵 ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝐵)
745, 14, 72, 73syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝐵)
7530, 43, 17, 69, 74letrd 11273 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝐵)
7615, 32pm3.2i 470 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
78 lemul2 11977 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 · 𝐵)))
7930, 17, 77, 78syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 · 𝐵)))
8075, 79mpbid 232 . . . . . . . . . 10 (𝜑 → (2 · 2) ≤ (2 · 𝐵))
8129, 80eqbrtrrid 5128 . . . . . . . . 9 (𝜑 → 4 ≤ (2 · 𝐵))
8222, 25, 19, 28, 81ltletrd 11276 . . . . . . . 8 (𝜑𝐴 < (2 · 𝐵))
8322, 19posdifd 11707 . . . . . . . 8 (𝜑 → (𝐴 < (2 · 𝐵) ↔ 0 < ((2 · 𝐵) − 𝐴)))
8482, 83mpbid 232 . . . . . . 7 (𝜑 → 0 < ((2 · 𝐵) − 𝐴))
8523, 84elrpd 12934 . . . . . 6 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ+)
8619recnd 11143 . . . . . . . 8 (𝜑 → (2 · 𝐵) ∈ ℂ)
8722recnd 11143 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
88 sinsub 16077 . . . . . . . 8 (((2 · 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))))
8986, 87, 88syl2anc 584 . . . . . . 7 (𝜑 → (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))))
9017recnd 11143 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
91 sin2t 16086 . . . . . . . . . . . . 13 (𝐵 ∈ ℂ → (sin‘(2 · 𝐵)) = (2 · ((sin‘𝐵) · (cos‘𝐵))))
9290, 91syl 17 . . . . . . . . . . . 12 (𝜑 → (sin‘(2 · 𝐵)) = (2 · ((sin‘𝐵) · (cos‘𝐵))))
9370oveq1d 7364 . . . . . . . . . . . . . . 15 (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = (0 · (cos‘𝐵)))
9490coscld 16040 . . . . . . . . . . . . . . . 16 (𝜑 → (cos‘𝐵) ∈ ℂ)
9594mul02d 11314 . . . . . . . . . . . . . . 15 (𝜑 → (0 · (cos‘𝐵)) = 0)
9693, 95eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = 0)
9796oveq2d 7365 . . . . . . . . . . . . 13 (𝜑 → (2 · ((sin‘𝐵) · (cos‘𝐵))) = (2 · 0))
98 2t0e0 12292 . . . . . . . . . . . . 13 (2 · 0) = 0
9997, 98eqtrdi 2780 . . . . . . . . . . . 12 (𝜑 → (2 · ((sin‘𝐵) · (cos‘𝐵))) = 0)
10092, 99eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (sin‘(2 · 𝐵)) = 0)
101100oveq1d 7364 . . . . . . . . . 10 (𝜑 → ((sin‘(2 · 𝐵)) · (cos‘𝐴)) = (0 · (cos‘𝐴)))
10287coscld 16040 . . . . . . . . . . 11 (𝜑 → (cos‘𝐴) ∈ ℂ)
103102mul02d 11314 . . . . . . . . . 10 (𝜑 → (0 · (cos‘𝐴)) = 0)
104101, 103eqtrd 2764 . . . . . . . . 9 (𝜑 → ((sin‘(2 · 𝐵)) · (cos‘𝐴)) = 0)
10537oveq2d 7365 . . . . . . . . . 10 (𝜑 → ((cos‘(2 · 𝐵)) · (sin‘𝐴)) = ((cos‘(2 · 𝐵)) · 0))
10686coscld 16040 . . . . . . . . . . 11 (𝜑 → (cos‘(2 · 𝐵)) ∈ ℂ)
107106mul01d 11315 . . . . . . . . . 10 (𝜑 → ((cos‘(2 · 𝐵)) · 0) = 0)
108105, 107eqtrd 2764 . . . . . . . . 9 (𝜑 → ((cos‘(2 · 𝐵)) · (sin‘𝐴)) = 0)
109104, 108oveq12d 7367 . . . . . . . 8 (𝜑 → (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))) = (0 − 0))
110 0m0e0 12243 . . . . . . . 8 (0 − 0) = 0
111109, 110eqtrdi 2780 . . . . . . 7 (𝜑 → (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))) = 0)
11289, 111eqtrd 2764 . . . . . 6 (𝜑 → (sin‘((2 · 𝐵) − 𝐴)) = 0)
113 pilem1 26359 . . . . . 6 (((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0})) ↔ (((2 · 𝐵) − 𝐴) ∈ ℝ+ ∧ (sin‘((2 · 𝐵) − 𝐴)) = 0))
11485, 112, 113sylanbrc 583 . . . . 5 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0})))
115 infrelb 12110 . . . . 5 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦 ∧ ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴))
1165, 14, 114, 115syl3anc 1373 . . . 4 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴))
1171, 116eqbrtrid 5127 . . 3 (𝜑 → π ≤ ((2 · 𝐵) − 𝐴))
1181, 43eqeltrid 2832 . . . 4 (𝜑 → π ∈ ℝ)
119 leaddsub 11596 . . . 4 ((π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ) → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴)))
120118, 22, 19, 119syl3anc 1373 . . 3 (𝜑 → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴)))
121117, 120mpbird 257 . 2 (𝜑 → (π + 𝐴) ≤ (2 · 𝐵))
122118, 22readdcld 11144 . . 3 (𝜑 → (π + 𝐴) ∈ ℝ)
123 ledivmul 12001 . . 3 (((π + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵)))
124122, 17, 77, 123syl3anc 1373 . 2 (𝜑 → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵)))
125121, 124mpbird 257 1 (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3902  wss 3903  c0 4284  {csn 4577   class class class wbr 5092  ccnv 5618  cima 5622  cfv 6482  (class class class)co 7349  infcinf 9331  cc 11007  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  2c2 12183  4c4 12185  +crp 12893  (,)cioo 13248  (,]cioc 13249  sincsin 15970  cosccos 15971  πcpi 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ioo 13252  df-ioc 13253  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979
This theorem is referenced by:  pilem3  26361
  Copyright terms: Public domain W3C validator