MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem2 Structured version   Visualization version   GIF version

Theorem pilem2 26434
Description: Lemma for pire 26438, pigt2lt4 26436 and sinpi 26437. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
pilem2.1 (𝜑𝐴 ∈ (2(,)4))
pilem2.2 (𝜑𝐵 ∈ ℝ+)
pilem2.3 (𝜑 → (sin‘𝐴) = 0)
pilem2.4 (𝜑 → (sin‘𝐵) = 0)
Assertion
Ref Expression
pilem2 (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)

Proof of Theorem pilem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pi 16052 . . . 4 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
2 inss1 4227 . . . . . . 7 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ+
3 rpssre 13016 . . . . . . 7 + ⊆ ℝ
42, 3sstri 3986 . . . . . 6 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ
54a1i 11 . . . . 5 (𝜑 → (ℝ+ ∩ (sin “ {0})) ⊆ ℝ)
6 0re 11248 . . . . . . 7 0 ∈ ℝ
7 elinel1 4193 . . . . . . . . 9 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑦 ∈ ℝ+)
87rpge0d 13055 . . . . . . . 8 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) → 0 ≤ 𝑦)
98rgen 3052 . . . . . . 7 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦
10 breq1 5152 . . . . . . . . 9 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
1110ralbidv 3167 . . . . . . . 8 (𝑥 = 0 → (∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦 ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦))
1211rspcev 3606 . . . . . . 7 ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦)
136, 9, 12mp2an 690 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦
1413a1i 11 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦)
15 2re 12319 . . . . . . . . 9 2 ∈ ℝ
16 pilem2.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
1716rpred 13051 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
18 remulcl 11225 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
1915, 17, 18sylancr 585 . . . . . . . 8 (𝜑 → (2 · 𝐵) ∈ ℝ)
20 pilem2.1 . . . . . . . . 9 (𝜑𝐴 ∈ (2(,)4))
21 elioore 13389 . . . . . . . . 9 (𝐴 ∈ (2(,)4) → 𝐴 ∈ ℝ)
2220, 21syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2319, 22resubcld 11674 . . . . . . 7 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ)
24 4re 12329 . . . . . . . . . 10 4 ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
26 eliooord 13418 . . . . . . . . . . 11 (𝐴 ∈ (2(,)4) → (2 < 𝐴𝐴 < 4))
2720, 26syl 17 . . . . . . . . . 10 (𝜑 → (2 < 𝐴𝐴 < 4))
2827simprd 494 . . . . . . . . 9 (𝜑𝐴 < 4)
29 2t2e4 12409 . . . . . . . . . 10 (2 · 2) = 4
3015a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
31 0red 11249 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ ℝ)
32 2pos 12348 . . . . . . . . . . . . . . . . . 18 0 < 2
3332a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 2)
3427simpld 493 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 < 𝐴)
3531, 30, 22, 33, 34lttrd 11407 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝐴)
3622, 35elrpd 13048 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ+)
37 pilem2.3 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘𝐴) = 0)
38 pilem1 26433 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0))
3936, 37, 38sylanbrc 581 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (ℝ+ ∩ (sin “ {0})))
4039ne0d 4335 . . . . . . . . . . . . 13 (𝜑 → (ℝ+ ∩ (sin “ {0})) ≠ ∅)
41 infrecl 12229 . . . . . . . . . . . . . 14 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
424, 13, 41mp3an13 1448 . . . . . . . . . . . . 13 ((ℝ+ ∩ (sin “ {0})) ≠ ∅ → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
4340, 42syl 17 . . . . . . . . . . . 12 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
44 pilem1 26433 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0))
45 rpre 13017 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4645adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
47 letric 11346 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 ≤ 𝑥𝑥 ≤ 2))
4815, 46, 47sylancr 585 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → (2 ≤ 𝑥𝑥 ≤ 2))
4948ord 862 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (¬ 2 ≤ 𝑥𝑥 ≤ 2))
5045ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈ ℝ)
51 rpgt0 13021 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ+ → 0 < 𝑥)
5251ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < 𝑥)
53 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ≤ 2)
54 0xr 11293 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
55 elioc2 13422 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2)))
5654, 15, 55mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2))
5750, 52, 53, 56syl3anbrc 1340 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈ (0(,]2))
58 sin02gt0 16172 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0(,]2) → 0 < (sin‘𝑥))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < (sin‘𝑥))
6059gt0ne0d 11810 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → (sin‘𝑥) ≠ 0)
6160ex 411 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ≤ 2 → (sin‘𝑥) ≠ 0))
6249, 61syld 47 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (¬ 2 ≤ 𝑥 → (sin‘𝑥) ≠ 0))
6362necon4bd 2949 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → ((sin‘𝑥) = 0 → 2 ≤ 𝑥))
6463expimpd 452 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0) → 2 ≤ 𝑥))
6544, 64biimtrid 241 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) → 2 ≤ 𝑥))
6665ralrimiv 3134 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥)
67 infregelb 12231 . . . . . . . . . . . . . 14 ((((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦) ∧ 2 ∈ ℝ) → (2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥))
685, 40, 14, 30, 67syl31anc 1370 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥))
6966, 68mpbird 256 . . . . . . . . . . . 12 (𝜑 → 2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ))
70 pilem2.4 . . . . . . . . . . . . . 14 (𝜑 → (sin‘𝐵) = 0)
71 pilem1 26433 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐵 ∈ ℝ+ ∧ (sin‘𝐵) = 0))
7216, 70, 71sylanbrc 581 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (ℝ+ ∩ (sin “ {0})))
73 infrelb 12232 . . . . . . . . . . . . 13 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦𝐵 ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝐵)
745, 14, 72, 73syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝐵)
7530, 43, 17, 69, 74letrd 11403 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝐵)
7615, 32pm3.2i 469 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
78 lemul2 12100 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 · 𝐵)))
7930, 17, 77, 78syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 · 𝐵)))
8075, 79mpbid 231 . . . . . . . . . 10 (𝜑 → (2 · 2) ≤ (2 · 𝐵))
8129, 80eqbrtrrid 5185 . . . . . . . . 9 (𝜑 → 4 ≤ (2 · 𝐵))
8222, 25, 19, 28, 81ltletrd 11406 . . . . . . . 8 (𝜑𝐴 < (2 · 𝐵))
8322, 19posdifd 11833 . . . . . . . 8 (𝜑 → (𝐴 < (2 · 𝐵) ↔ 0 < ((2 · 𝐵) − 𝐴)))
8482, 83mpbid 231 . . . . . . 7 (𝜑 → 0 < ((2 · 𝐵) − 𝐴))
8523, 84elrpd 13048 . . . . . 6 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ+)
8619recnd 11274 . . . . . . . 8 (𝜑 → (2 · 𝐵) ∈ ℂ)
8722recnd 11274 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
88 sinsub 16148 . . . . . . . 8 (((2 · 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))))
8986, 87, 88syl2anc 582 . . . . . . 7 (𝜑 → (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))))
9017recnd 11274 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
91 sin2t 16157 . . . . . . . . . . . . 13 (𝐵 ∈ ℂ → (sin‘(2 · 𝐵)) = (2 · ((sin‘𝐵) · (cos‘𝐵))))
9290, 91syl 17 . . . . . . . . . . . 12 (𝜑 → (sin‘(2 · 𝐵)) = (2 · ((sin‘𝐵) · (cos‘𝐵))))
9370oveq1d 7434 . . . . . . . . . . . . . . 15 (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = (0 · (cos‘𝐵)))
9490coscld 16111 . . . . . . . . . . . . . . . 16 (𝜑 → (cos‘𝐵) ∈ ℂ)
9594mul02d 11444 . . . . . . . . . . . . . . 15 (𝜑 → (0 · (cos‘𝐵)) = 0)
9693, 95eqtrd 2765 . . . . . . . . . . . . . 14 (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = 0)
9796oveq2d 7435 . . . . . . . . . . . . 13 (𝜑 → (2 · ((sin‘𝐵) · (cos‘𝐵))) = (2 · 0))
98 2t0e0 12414 . . . . . . . . . . . . 13 (2 · 0) = 0
9997, 98eqtrdi 2781 . . . . . . . . . . . 12 (𝜑 → (2 · ((sin‘𝐵) · (cos‘𝐵))) = 0)
10092, 99eqtrd 2765 . . . . . . . . . . 11 (𝜑 → (sin‘(2 · 𝐵)) = 0)
101100oveq1d 7434 . . . . . . . . . 10 (𝜑 → ((sin‘(2 · 𝐵)) · (cos‘𝐴)) = (0 · (cos‘𝐴)))
10287coscld 16111 . . . . . . . . . . 11 (𝜑 → (cos‘𝐴) ∈ ℂ)
103102mul02d 11444 . . . . . . . . . 10 (𝜑 → (0 · (cos‘𝐴)) = 0)
104101, 103eqtrd 2765 . . . . . . . . 9 (𝜑 → ((sin‘(2 · 𝐵)) · (cos‘𝐴)) = 0)
10537oveq2d 7435 . . . . . . . . . 10 (𝜑 → ((cos‘(2 · 𝐵)) · (sin‘𝐴)) = ((cos‘(2 · 𝐵)) · 0))
10686coscld 16111 . . . . . . . . . . 11 (𝜑 → (cos‘(2 · 𝐵)) ∈ ℂ)
107106mul01d 11445 . . . . . . . . . 10 (𝜑 → ((cos‘(2 · 𝐵)) · 0) = 0)
108105, 107eqtrd 2765 . . . . . . . . 9 (𝜑 → ((cos‘(2 · 𝐵)) · (sin‘𝐴)) = 0)
109104, 108oveq12d 7437 . . . . . . . 8 (𝜑 → (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))) = (0 − 0))
110 0m0e0 12365 . . . . . . . 8 (0 − 0) = 0
111109, 110eqtrdi 2781 . . . . . . 7 (𝜑 → (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))) = 0)
11289, 111eqtrd 2765 . . . . . 6 (𝜑 → (sin‘((2 · 𝐵) − 𝐴)) = 0)
113 pilem1 26433 . . . . . 6 (((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0})) ↔ (((2 · 𝐵) − 𝐴) ∈ ℝ+ ∧ (sin‘((2 · 𝐵) − 𝐴)) = 0))
11485, 112, 113sylanbrc 581 . . . . 5 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0})))
115 infrelb 12232 . . . . 5 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦 ∧ ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴))
1165, 14, 114, 115syl3anc 1368 . . . 4 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴))
1171, 116eqbrtrid 5184 . . 3 (𝜑 → π ≤ ((2 · 𝐵) − 𝐴))
1181, 43eqeltrid 2829 . . . 4 (𝜑 → π ∈ ℝ)
119 leaddsub 11722 . . . 4 ((π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ) → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴)))
120118, 22, 19, 119syl3anc 1368 . . 3 (𝜑 → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴)))
121117, 120mpbird 256 . 2 (𝜑 → (π + 𝐴) ≤ (2 · 𝐵))
122118, 22readdcld 11275 . . 3 (𝜑 → (π + 𝐴) ∈ ℝ)
123 ledivmul 12123 . . 3 (((π + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵)))
124122, 17, 77, 123syl3anc 1368 . 2 (𝜑 → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵)))
125121, 124mpbird 256 1 (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  cin 3943  wss 3944  c0 4322  {csn 4630   class class class wbr 5149  ccnv 5677  cima 5681  cfv 6549  (class class class)co 7419  infcinf 9466  cc 11138  cr 11139  0cc0 11140   + caddc 11143   · cmul 11145  *cxr 11279   < clt 11280  cle 11281  cmin 11476   / cdiv 11903  2c2 12300  4c4 12302  +crp 13009  (,)cioo 13359  (,]cioc 13360  sincsin 16043  cosccos 16044  πcpi 16046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-ioo 13363  df-ioc 13364  df-ico 13365  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-ef 16047  df-sin 16049  df-cos 16050  df-pi 16052
This theorem is referenced by:  pilem3  26435
  Copyright terms: Public domain W3C validator