MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem2 Structured version   Visualization version   GIF version

Theorem pilem2 26362
Description: Lemma for pire 26366, pigt2lt4 26364 and sinpi 26365. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
pilem2.1 (𝜑𝐴 ∈ (2(,)4))
pilem2.2 (𝜑𝐵 ∈ ℝ+)
pilem2.3 (𝜑 → (sin‘𝐴) = 0)
pilem2.4 (𝜑 → (sin‘𝐵) = 0)
Assertion
Ref Expression
pilem2 (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)

Proof of Theorem pilem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pi 16038 . . . 4 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
2 inss1 4200 . . . . . . 7 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ+
3 rpssre 12959 . . . . . . 7 + ⊆ ℝ
42, 3sstri 3956 . . . . . 6 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ
54a1i 11 . . . . 5 (𝜑 → (ℝ+ ∩ (sin “ {0})) ⊆ ℝ)
6 0re 11176 . . . . . . 7 0 ∈ ℝ
7 elinel1 4164 . . . . . . . . 9 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑦 ∈ ℝ+)
87rpge0d 12999 . . . . . . . 8 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) → 0 ≤ 𝑦)
98rgen 3046 . . . . . . 7 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦
10 breq1 5110 . . . . . . . . 9 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
1110ralbidv 3156 . . . . . . . 8 (𝑥 = 0 → (∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦 ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦))
1211rspcev 3588 . . . . . . 7 ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦)
136, 9, 12mp2an 692 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦
1413a1i 11 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦)
15 2re 12260 . . . . . . . . 9 2 ∈ ℝ
16 pilem2.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
1716rpred 12995 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
18 remulcl 11153 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
1915, 17, 18sylancr 587 . . . . . . . 8 (𝜑 → (2 · 𝐵) ∈ ℝ)
20 pilem2.1 . . . . . . . . 9 (𝜑𝐴 ∈ (2(,)4))
21 elioore 13336 . . . . . . . . 9 (𝐴 ∈ (2(,)4) → 𝐴 ∈ ℝ)
2220, 21syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2319, 22resubcld 11606 . . . . . . 7 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ)
24 4re 12270 . . . . . . . . . 10 4 ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
26 eliooord 13366 . . . . . . . . . . 11 (𝐴 ∈ (2(,)4) → (2 < 𝐴𝐴 < 4))
2720, 26syl 17 . . . . . . . . . 10 (𝜑 → (2 < 𝐴𝐴 < 4))
2827simprd 495 . . . . . . . . 9 (𝜑𝐴 < 4)
29 2t2e4 12345 . . . . . . . . . 10 (2 · 2) = 4
3015a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
31 0red 11177 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ ℝ)
32 2pos 12289 . . . . . . . . . . . . . . . . . 18 0 < 2
3332a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 2)
3427simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 < 𝐴)
3531, 30, 22, 33, 34lttrd 11335 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝐴)
3622, 35elrpd 12992 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ+)
37 pilem2.3 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘𝐴) = 0)
38 pilem1 26361 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0))
3936, 37, 38sylanbrc 583 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (ℝ+ ∩ (sin “ {0})))
4039ne0d 4305 . . . . . . . . . . . . 13 (𝜑 → (ℝ+ ∩ (sin “ {0})) ≠ ∅)
41 infrecl 12165 . . . . . . . . . . . . . 14 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
424, 13, 41mp3an13 1454 . . . . . . . . . . . . 13 ((ℝ+ ∩ (sin “ {0})) ≠ ∅ → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
4340, 42syl 17 . . . . . . . . . . . 12 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
44 pilem1 26361 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0))
45 rpre 12960 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4645adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
47 letric 11274 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 ≤ 𝑥𝑥 ≤ 2))
4815, 46, 47sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → (2 ≤ 𝑥𝑥 ≤ 2))
4948ord 864 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (¬ 2 ≤ 𝑥𝑥 ≤ 2))
5045ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈ ℝ)
51 rpgt0 12964 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ+ → 0 < 𝑥)
5251ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < 𝑥)
53 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ≤ 2)
54 0xr 11221 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
55 elioc2 13370 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2)))
5654, 15, 55mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2))
5750, 52, 53, 56syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈ (0(,]2))
58 sin02gt0 16160 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0(,]2) → 0 < (sin‘𝑥))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < (sin‘𝑥))
6059gt0ne0d 11742 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → (sin‘𝑥) ≠ 0)
6160ex 412 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ≤ 2 → (sin‘𝑥) ≠ 0))
6249, 61syld 47 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (¬ 2 ≤ 𝑥 → (sin‘𝑥) ≠ 0))
6362necon4bd 2945 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → ((sin‘𝑥) = 0 → 2 ≤ 𝑥))
6463expimpd 453 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0) → 2 ≤ 𝑥))
6544, 64biimtrid 242 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) → 2 ≤ 𝑥))
6665ralrimiv 3124 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥)
67 infregelb 12167 . . . . . . . . . . . . . 14 ((((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦) ∧ 2 ∈ ℝ) → (2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥))
685, 40, 14, 30, 67syl31anc 1375 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥))
6966, 68mpbird 257 . . . . . . . . . . . 12 (𝜑 → 2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ))
70 pilem2.4 . . . . . . . . . . . . . 14 (𝜑 → (sin‘𝐵) = 0)
71 pilem1 26361 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐵 ∈ ℝ+ ∧ (sin‘𝐵) = 0))
7216, 70, 71sylanbrc 583 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (ℝ+ ∩ (sin “ {0})))
73 infrelb 12168 . . . . . . . . . . . . 13 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦𝐵 ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝐵)
745, 14, 72, 73syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝐵)
7530, 43, 17, 69, 74letrd 11331 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝐵)
7615, 32pm3.2i 470 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
78 lemul2 12035 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 · 𝐵)))
7930, 17, 77, 78syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 · 𝐵)))
8075, 79mpbid 232 . . . . . . . . . 10 (𝜑 → (2 · 2) ≤ (2 · 𝐵))
8129, 80eqbrtrrid 5143 . . . . . . . . 9 (𝜑 → 4 ≤ (2 · 𝐵))
8222, 25, 19, 28, 81ltletrd 11334 . . . . . . . 8 (𝜑𝐴 < (2 · 𝐵))
8322, 19posdifd 11765 . . . . . . . 8 (𝜑 → (𝐴 < (2 · 𝐵) ↔ 0 < ((2 · 𝐵) − 𝐴)))
8482, 83mpbid 232 . . . . . . 7 (𝜑 → 0 < ((2 · 𝐵) − 𝐴))
8523, 84elrpd 12992 . . . . . 6 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ+)
8619recnd 11202 . . . . . . . 8 (𝜑 → (2 · 𝐵) ∈ ℂ)
8722recnd 11202 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
88 sinsub 16136 . . . . . . . 8 (((2 · 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))))
8986, 87, 88syl2anc 584 . . . . . . 7 (𝜑 → (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))))
9017recnd 11202 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
91 sin2t 16145 . . . . . . . . . . . . 13 (𝐵 ∈ ℂ → (sin‘(2 · 𝐵)) = (2 · ((sin‘𝐵) · (cos‘𝐵))))
9290, 91syl 17 . . . . . . . . . . . 12 (𝜑 → (sin‘(2 · 𝐵)) = (2 · ((sin‘𝐵) · (cos‘𝐵))))
9370oveq1d 7402 . . . . . . . . . . . . . . 15 (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = (0 · (cos‘𝐵)))
9490coscld 16099 . . . . . . . . . . . . . . . 16 (𝜑 → (cos‘𝐵) ∈ ℂ)
9594mul02d 11372 . . . . . . . . . . . . . . 15 (𝜑 → (0 · (cos‘𝐵)) = 0)
9693, 95eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = 0)
9796oveq2d 7403 . . . . . . . . . . . . 13 (𝜑 → (2 · ((sin‘𝐵) · (cos‘𝐵))) = (2 · 0))
98 2t0e0 12350 . . . . . . . . . . . . 13 (2 · 0) = 0
9997, 98eqtrdi 2780 . . . . . . . . . . . 12 (𝜑 → (2 · ((sin‘𝐵) · (cos‘𝐵))) = 0)
10092, 99eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (sin‘(2 · 𝐵)) = 0)
101100oveq1d 7402 . . . . . . . . . 10 (𝜑 → ((sin‘(2 · 𝐵)) · (cos‘𝐴)) = (0 · (cos‘𝐴)))
10287coscld 16099 . . . . . . . . . . 11 (𝜑 → (cos‘𝐴) ∈ ℂ)
103102mul02d 11372 . . . . . . . . . 10 (𝜑 → (0 · (cos‘𝐴)) = 0)
104101, 103eqtrd 2764 . . . . . . . . 9 (𝜑 → ((sin‘(2 · 𝐵)) · (cos‘𝐴)) = 0)
10537oveq2d 7403 . . . . . . . . . 10 (𝜑 → ((cos‘(2 · 𝐵)) · (sin‘𝐴)) = ((cos‘(2 · 𝐵)) · 0))
10686coscld 16099 . . . . . . . . . . 11 (𝜑 → (cos‘(2 · 𝐵)) ∈ ℂ)
107106mul01d 11373 . . . . . . . . . 10 (𝜑 → ((cos‘(2 · 𝐵)) · 0) = 0)
108105, 107eqtrd 2764 . . . . . . . . 9 (𝜑 → ((cos‘(2 · 𝐵)) · (sin‘𝐴)) = 0)
109104, 108oveq12d 7405 . . . . . . . 8 (𝜑 → (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))) = (0 − 0))
110 0m0e0 12301 . . . . . . . 8 (0 − 0) = 0
111109, 110eqtrdi 2780 . . . . . . 7 (𝜑 → (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))) = 0)
11289, 111eqtrd 2764 . . . . . 6 (𝜑 → (sin‘((2 · 𝐵) − 𝐴)) = 0)
113 pilem1 26361 . . . . . 6 (((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0})) ↔ (((2 · 𝐵) − 𝐴) ∈ ℝ+ ∧ (sin‘((2 · 𝐵) − 𝐴)) = 0))
11485, 112, 113sylanbrc 583 . . . . 5 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0})))
115 infrelb 12168 . . . . 5 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦 ∧ ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴))
1165, 14, 114, 115syl3anc 1373 . . . 4 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴))
1171, 116eqbrtrid 5142 . . 3 (𝜑 → π ≤ ((2 · 𝐵) − 𝐴))
1181, 43eqeltrid 2832 . . . 4 (𝜑 → π ∈ ℝ)
119 leaddsub 11654 . . . 4 ((π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ) → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴)))
120118, 22, 19, 119syl3anc 1373 . . 3 (𝜑 → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴)))
121117, 120mpbird 257 . 2 (𝜑 → (π + 𝐴) ≤ (2 · 𝐵))
122118, 22readdcld 11203 . . 3 (𝜑 → (π + 𝐴) ∈ ℝ)
123 ledivmul 12059 . . 3 (((π + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵)))
124122, 17, 77, 123syl3anc 1373 . 2 (𝜑 → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵)))
125121, 124mpbird 257 1 (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  infcinf 9392  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  4c4 12243  +crp 12951  (,)cioo 13306  (,]cioc 13307  sincsin 16029  cosccos 16030  πcpi 16032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ioo 13310  df-ioc 13311  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038
This theorem is referenced by:  pilem3  26363
  Copyright terms: Public domain W3C validator