MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem2 Structured version   Visualization version   GIF version

Theorem pilem2 24711
Description: Lemma for pire 24715, pigt2lt4 24713 and sinpi 24714. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
pilem2.1 (𝜑𝐴 ∈ (2(,)4))
pilem2.2 (𝜑𝐵 ∈ ℝ+)
pilem2.3 (𝜑 → (sin‘𝐴) = 0)
pilem2.4 (𝜑 → (sin‘𝐵) = 0)
Assertion
Ref Expression
pilem2 (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)

Proof of Theorem pilem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pi 15247 . . . 4 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
2 inss1 4120 . . . . . . 7 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ+
3 rpssre 12235 . . . . . . 7 + ⊆ ℝ
42, 3sstri 3893 . . . . . 6 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ
54a1i 11 . . . . 5 (𝜑 → (ℝ+ ∩ (sin “ {0})) ⊆ ℝ)
6 0re 10478 . . . . . . 7 0 ∈ ℝ
7 elinel1 4088 . . . . . . . . 9 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑦 ∈ ℝ+)
87rpge0d 12274 . . . . . . . 8 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) → 0 ≤ 𝑦)
98rgen 3113 . . . . . . 7 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦
10 breq1 4959 . . . . . . . . 9 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
1110ralbidv 3162 . . . . . . . 8 (𝑥 = 0 → (∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦 ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦))
1211rspcev 3554 . . . . . . 7 ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦)
136, 9, 12mp2an 688 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦
1413a1i 11 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦)
15 2re 11548 . . . . . . . . 9 2 ∈ ℝ
16 pilem2.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
1716rpred 12270 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
18 remulcl 10457 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
1915, 17, 18sylancr 587 . . . . . . . 8 (𝜑 → (2 · 𝐵) ∈ ℝ)
20 pilem2.1 . . . . . . . . 9 (𝜑𝐴 ∈ (2(,)4))
21 elioore 12607 . . . . . . . . 9 (𝐴 ∈ (2(,)4) → 𝐴 ∈ ℝ)
2220, 21syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2319, 22resubcld 10905 . . . . . . 7 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ)
24 4re 11558 . . . . . . . . . 10 4 ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
26 eliooord 12635 . . . . . . . . . . 11 (𝐴 ∈ (2(,)4) → (2 < 𝐴𝐴 < 4))
2720, 26syl 17 . . . . . . . . . 10 (𝜑 → (2 < 𝐴𝐴 < 4))
2827simprd 496 . . . . . . . . 9 (𝜑𝐴 < 4)
29 2t2e4 11638 . . . . . . . . . 10 (2 · 2) = 4
3015a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
31 0red 10479 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ ℝ)
32 2pos 11577 . . . . . . . . . . . . . . . . . 18 0 < 2
3332a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 2)
3427simpld 495 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 < 𝐴)
3531, 30, 22, 33, 34lttrd 10637 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝐴)
3622, 35elrpd 12267 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ+)
37 pilem2.3 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘𝐴) = 0)
38 pilem1 24710 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0))
3936, 37, 38sylanbrc 583 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (ℝ+ ∩ (sin “ {0})))
4039ne0d 4215 . . . . . . . . . . . . 13 (𝜑 → (ℝ+ ∩ (sin “ {0})) ≠ ∅)
41 infrecl 11460 . . . . . . . . . . . . . 14 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
424, 13, 41mp3an13 1442 . . . . . . . . . . . . 13 ((ℝ+ ∩ (sin “ {0})) ≠ ∅ → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
4340, 42syl 17 . . . . . . . . . . . 12 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
44 pilem1 24710 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0))
45 rpre 12236 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4645adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
47 letric 10576 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 ≤ 𝑥𝑥 ≤ 2))
4815, 46, 47sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → (2 ≤ 𝑥𝑥 ≤ 2))
4948ord 859 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (¬ 2 ≤ 𝑥𝑥 ≤ 2))
5045ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈ ℝ)
51 rpgt0 12240 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ+ → 0 < 𝑥)
5251ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < 𝑥)
53 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ≤ 2)
54 0xr 10523 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
55 elioc2 12638 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2)))
5654, 15, 55mp2an 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2))
5750, 52, 53, 56syl3anbrc 1334 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 𝑥 ∈ (0(,]2))
58 sin02gt0 15366 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0(,]2) → 0 < (sin‘𝑥))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → 0 < (sin‘𝑥))
6059gt0ne0d 11041 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑥 ≤ 2) → (sin‘𝑥) ≠ 0)
6160ex 413 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ≤ 2 → (sin‘𝑥) ≠ 0))
6249, 61syld 47 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (¬ 2 ≤ 𝑥 → (sin‘𝑥) ≠ 0))
6362necon4bd 3002 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → ((sin‘𝑥) = 0 → 2 ≤ 𝑥))
6463expimpd 454 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0) → 2 ≤ 𝑥))
6544, 64syl5bi 243 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) → 2 ≤ 𝑥))
6665ralrimiv 3146 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥)
67 infregelb 11462 . . . . . . . . . . . . . 14 ((((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦) ∧ 2 ∈ ℝ) → (2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥))
685, 40, 14, 30, 67syl31anc 1364 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (sin “ {0}))2 ≤ 𝑥))
6966, 68mpbird 258 . . . . . . . . . . . 12 (𝜑 → 2 ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ))
70 pilem2.4 . . . . . . . . . . . . . 14 (𝜑 → (sin‘𝐵) = 0)
71 pilem1 24710 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐵 ∈ ℝ+ ∧ (sin‘𝐵) = 0))
7216, 70, 71sylanbrc 583 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (ℝ+ ∩ (sin “ {0})))
73 infrelb 11463 . . . . . . . . . . . . 13 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦𝐵 ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝐵)
745, 14, 72, 73syl3anc 1362 . . . . . . . . . . . 12 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝐵)
7530, 43, 17, 69, 74letrd 10633 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝐵)
7615, 32pm3.2i 471 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
78 lemul2 11330 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 · 𝐵)))
7930, 17, 77, 78syl3anc 1362 . . . . . . . . . . 11 (𝜑 → (2 ≤ 𝐵 ↔ (2 · 2) ≤ (2 · 𝐵)))
8075, 79mpbid 233 . . . . . . . . . 10 (𝜑 → (2 · 2) ≤ (2 · 𝐵))
8129, 80eqbrtrrid 4992 . . . . . . . . 9 (𝜑 → 4 ≤ (2 · 𝐵))
8222, 25, 19, 28, 81ltletrd 10636 . . . . . . . 8 (𝜑𝐴 < (2 · 𝐵))
8322, 19posdifd 11064 . . . . . . . 8 (𝜑 → (𝐴 < (2 · 𝐵) ↔ 0 < ((2 · 𝐵) − 𝐴)))
8482, 83mpbid 233 . . . . . . 7 (𝜑 → 0 < ((2 · 𝐵) − 𝐴))
8523, 84elrpd 12267 . . . . . 6 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ ℝ+)
8619recnd 10504 . . . . . . . 8 (𝜑 → (2 · 𝐵) ∈ ℂ)
8722recnd 10504 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
88 sinsub 15342 . . . . . . . 8 (((2 · 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))))
8986, 87, 88syl2anc 584 . . . . . . 7 (𝜑 → (sin‘((2 · 𝐵) − 𝐴)) = (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))))
9017recnd 10504 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
91 sin2t 15351 . . . . . . . . . . . . 13 (𝐵 ∈ ℂ → (sin‘(2 · 𝐵)) = (2 · ((sin‘𝐵) · (cos‘𝐵))))
9290, 91syl 17 . . . . . . . . . . . 12 (𝜑 → (sin‘(2 · 𝐵)) = (2 · ((sin‘𝐵) · (cos‘𝐵))))
9370oveq1d 7022 . . . . . . . . . . . . . . 15 (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = (0 · (cos‘𝐵)))
9490coscld 15305 . . . . . . . . . . . . . . . 16 (𝜑 → (cos‘𝐵) ∈ ℂ)
9594mul02d 10674 . . . . . . . . . . . . . . 15 (𝜑 → (0 · (cos‘𝐵)) = 0)
9693, 95eqtrd 2829 . . . . . . . . . . . . . 14 (𝜑 → ((sin‘𝐵) · (cos‘𝐵)) = 0)
9796oveq2d 7023 . . . . . . . . . . . . 13 (𝜑 → (2 · ((sin‘𝐵) · (cos‘𝐵))) = (2 · 0))
98 2t0e0 11643 . . . . . . . . . . . . 13 (2 · 0) = 0
9997, 98syl6eq 2845 . . . . . . . . . . . 12 (𝜑 → (2 · ((sin‘𝐵) · (cos‘𝐵))) = 0)
10092, 99eqtrd 2829 . . . . . . . . . . 11 (𝜑 → (sin‘(2 · 𝐵)) = 0)
101100oveq1d 7022 . . . . . . . . . 10 (𝜑 → ((sin‘(2 · 𝐵)) · (cos‘𝐴)) = (0 · (cos‘𝐴)))
10287coscld 15305 . . . . . . . . . . 11 (𝜑 → (cos‘𝐴) ∈ ℂ)
103102mul02d 10674 . . . . . . . . . 10 (𝜑 → (0 · (cos‘𝐴)) = 0)
104101, 103eqtrd 2829 . . . . . . . . 9 (𝜑 → ((sin‘(2 · 𝐵)) · (cos‘𝐴)) = 0)
10537oveq2d 7023 . . . . . . . . . 10 (𝜑 → ((cos‘(2 · 𝐵)) · (sin‘𝐴)) = ((cos‘(2 · 𝐵)) · 0))
10686coscld 15305 . . . . . . . . . . 11 (𝜑 → (cos‘(2 · 𝐵)) ∈ ℂ)
107106mul01d 10675 . . . . . . . . . 10 (𝜑 → ((cos‘(2 · 𝐵)) · 0) = 0)
108105, 107eqtrd 2829 . . . . . . . . 9 (𝜑 → ((cos‘(2 · 𝐵)) · (sin‘𝐴)) = 0)
109104, 108oveq12d 7025 . . . . . . . 8 (𝜑 → (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))) = (0 − 0))
110 0m0e0 11594 . . . . . . . 8 (0 − 0) = 0
111109, 110syl6eq 2845 . . . . . . 7 (𝜑 → (((sin‘(2 · 𝐵)) · (cos‘𝐴)) − ((cos‘(2 · 𝐵)) · (sin‘𝐴))) = 0)
11289, 111eqtrd 2829 . . . . . 6 (𝜑 → (sin‘((2 · 𝐵) − 𝐴)) = 0)
113 pilem1 24710 . . . . . 6 (((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0})) ↔ (((2 · 𝐵) − 𝐴) ∈ ℝ+ ∧ (sin‘((2 · 𝐵) − 𝐴)) = 0))
11485, 112, 113sylanbrc 583 . . . . 5 (𝜑 → ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0})))
115 infrelb 11463 . . . . 5 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))𝑥𝑦 ∧ ((2 · 𝐵) − 𝐴) ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴))
1165, 14, 114, 115syl3anc 1362 . . . 4 (𝜑 → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ ((2 · 𝐵) − 𝐴))
1171, 116eqbrtrid 4991 . . 3 (𝜑 → π ≤ ((2 · 𝐵) − 𝐴))
1181, 43syl5eqel 2885 . . . 4 (𝜑 → π ∈ ℝ)
119 leaddsub 10953 . . . 4 ((π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ) → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴)))
120118, 22, 19, 119syl3anc 1362 . . 3 (𝜑 → ((π + 𝐴) ≤ (2 · 𝐵) ↔ π ≤ ((2 · 𝐵) − 𝐴)))
121117, 120mpbird 258 . 2 (𝜑 → (π + 𝐴) ≤ (2 · 𝐵))
122118, 22readdcld 10505 . . 3 (𝜑 → (π + 𝐴) ∈ ℝ)
123 ledivmul 11353 . . 3 (((π + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵)))
124122, 17, 77, 123syl3anc 1362 . 2 (𝜑 → (((π + 𝐴) / 2) ≤ 𝐵 ↔ (π + 𝐴) ≤ (2 · 𝐵)))
125121, 124mpbird 258 1 (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1078   = wceq 1520  wcel 2079  wne 2982  wral 3103  wrex 3104  cin 3853  wss 3854  c0 4206  {csn 4466   class class class wbr 4956  ccnv 5434  cima 5438  cfv 6217  (class class class)co 7007  infcinf 8741  cc 10370  cr 10371  0cc0 10372   + caddc 10375   · cmul 10377  *cxr 10509   < clt 10510  cle 10511  cmin 10706   / cdiv 11134  2c2 11529  4c4 11531  +crp 12228  (,)cioo 12577  (,]cioc 12578  sincsin 15238  cosccos 15239  πcpi 15241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-oadd 7948  df-er 8130  df-pm 8250  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-sup 8742  df-inf 8743  df-oi 8810  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-n0 11735  df-z 11819  df-uz 12083  df-rp 12229  df-ioo 12581  df-ioc 12582  df-ico 12583  df-fz 12732  df-fzo 12873  df-fl 13000  df-seq 13208  df-exp 13268  df-fac 13472  df-bc 13501  df-hash 13529  df-shft 14248  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-limsup 14650  df-clim 14667  df-rlim 14668  df-sum 14865  df-ef 15242  df-sin 15244  df-cos 15245  df-pi 15247
This theorem is referenced by:  pilem3  24712
  Copyright terms: Public domain W3C validator