MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1val Structured version   Visualization version   GIF version

Theorem pi1val 24784
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 Ο€1 π‘Œ)
pi1val.1 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
pi1val.2 (πœ‘ β†’ π‘Œ ∈ 𝑋)
pi1val.o 𝑂 = (𝐽 Ξ©1 π‘Œ)
Assertion
Ref Expression
pi1val (πœ‘ β†’ 𝐺 = (𝑂 /s ( ≃phβ€˜π½)))

Proof of Theorem pi1val
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1val.g . 2 𝐺 = (𝐽 Ο€1 π‘Œ)
2 df-pi1 24755 . . . 4 Ο€1 = (𝑗 ∈ Top, 𝑦 ∈ βˆͺ 𝑗 ↦ ((𝑗 Ξ©1 𝑦) /s ( ≃phβ€˜π‘—)))
32a1i 11 . . 3 (πœ‘ β†’ Ο€1 = (𝑗 ∈ Top, 𝑦 ∈ βˆͺ 𝑗 ↦ ((𝑗 Ξ©1 𝑦) /s ( ≃phβ€˜π‘—))))
4 simprl 767 . . . . . 6 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ 𝑗 = 𝐽)
5 simprr 769 . . . . . 6 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ 𝑦 = π‘Œ)
64, 5oveq12d 7429 . . . . 5 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ (𝑗 Ξ©1 𝑦) = (𝐽 Ξ©1 π‘Œ))
7 pi1val.o . . . . 5 𝑂 = (𝐽 Ξ©1 π‘Œ)
86, 7eqtr4di 2788 . . . 4 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ (𝑗 Ξ©1 𝑦) = 𝑂)
94fveq2d 6894 . . . 4 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ ( ≃phβ€˜π‘—) = ( ≃phβ€˜π½))
108, 9oveq12d 7429 . . 3 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ ((𝑗 Ξ©1 𝑦) /s ( ≃phβ€˜π‘—)) = (𝑂 /s ( ≃phβ€˜π½)))
11 unieq 4918 . . . . 5 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
1211adantl 480 . . . 4 ((πœ‘ ∧ 𝑗 = 𝐽) β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
13 pi1val.1 . . . . . 6 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
14 toponuni 22636 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
1513, 14syl 17 . . . . 5 (πœ‘ β†’ 𝑋 = βˆͺ 𝐽)
1615adantr 479 . . . 4 ((πœ‘ ∧ 𝑗 = 𝐽) β†’ 𝑋 = βˆͺ 𝐽)
1712, 16eqtr4d 2773 . . 3 ((πœ‘ ∧ 𝑗 = 𝐽) β†’ βˆͺ 𝑗 = 𝑋)
18 topontop 22635 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
1913, 18syl 17 . . 3 (πœ‘ β†’ 𝐽 ∈ Top)
20 pi1val.2 . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑋)
21 ovexd 7446 . . 3 (πœ‘ β†’ (𝑂 /s ( ≃phβ€˜π½)) ∈ V)
223, 10, 17, 19, 20, 21ovmpodx 7561 . 2 (πœ‘ β†’ (𝐽 Ο€1 π‘Œ) = (𝑂 /s ( ≃phβ€˜π½)))
231, 22eqtrid 2782 1 (πœ‘ β†’ 𝐺 = (𝑂 /s ( ≃phβ€˜π½)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  Vcvv 3472  βˆͺ cuni 4907  β€˜cfv 6542  (class class class)co 7411   ∈ cmpo 7413   /s cqus 17455  Topctop 22615  TopOnctopon 22632   ≃phcphtpc 24715   Ξ©1 comi 24748   Ο€1 cpi1 24750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-topon 22633  df-pi1 24755
This theorem is referenced by:  pi1bas  24785  pi1addf  24794  pi1addval  24795  pi1grplem  24796
  Copyright terms: Public domain W3C validator