MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1val Structured version   Visualization version   GIF version

Theorem pi1val 25084
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1val.o 𝑂 = (𝐽 Ω1 𝑌)
Assertion
Ref Expression
pi1val (𝜑𝐺 = (𝑂 /s ( ≃ph𝐽)))

Proof of Theorem pi1val
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1val.g . 2 𝐺 = (𝐽 π1 𝑌)
2 df-pi1 25055 . . . 4 π1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗)))
32a1i 11 . . 3 (𝜑 → π1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗))))
4 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑗 = 𝐽)
5 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑦 = 𝑌)
64, 5oveq12d 7449 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = (𝐽 Ω1 𝑌))
7 pi1val.o . . . . 5 𝑂 = (𝐽 Ω1 𝑌)
86, 7eqtr4di 2793 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = 𝑂)
94fveq2d 6911 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ( ≃ph𝑗) = ( ≃ph𝐽))
108, 9oveq12d 7449 . . 3 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗)) = (𝑂 /s ( ≃ph𝐽)))
11 unieq 4923 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
1211adantl 481 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝐽)
13 pi1val.1 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
14 toponuni 22936 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1513, 14syl 17 . . . . 5 (𝜑𝑋 = 𝐽)
1615adantr 480 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑋 = 𝐽)
1712, 16eqtr4d 2778 . . 3 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝑋)
18 topontop 22935 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1913, 18syl 17 . . 3 (𝜑𝐽 ∈ Top)
20 pi1val.2 . . 3 (𝜑𝑌𝑋)
21 ovexd 7466 . . 3 (𝜑 → (𝑂 /s ( ≃ph𝐽)) ∈ V)
223, 10, 17, 19, 20, 21ovmpodx 7584 . 2 (𝜑 → (𝐽 π1 𝑌) = (𝑂 /s ( ≃ph𝐽)))
231, 22eqtrid 2787 1 (𝜑𝐺 = (𝑂 /s ( ≃ph𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478   cuni 4912  cfv 6563  (class class class)co 7431  cmpo 7433   /s cqus 17552  Topctop 22915  TopOnctopon 22932  phcphtpc 25015   Ω1 comi 25048   π1 cpi1 25050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-topon 22933  df-pi1 25055
This theorem is referenced by:  pi1bas  25085  pi1addf  25094  pi1addval  25095  pi1grplem  25096
  Copyright terms: Public domain W3C validator