Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pi1val | Structured version Visualization version GIF version |
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1val.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
Ref | Expression |
---|---|
pi1val | ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1val.g | . 2 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
2 | df-pi1 24169 | . . . 4 ⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)))) |
4 | simprl 768 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → 𝑗 = 𝐽) | |
5 | simprr 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
6 | 4, 5 | oveq12d 7289 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = (𝐽 Ω1 𝑌)) |
7 | pi1val.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
8 | 6, 7 | eqtr4di 2798 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = 𝑂) |
9 | 4 | fveq2d 6775 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → ( ≃ph‘𝑗) = ( ≃ph‘𝐽)) |
10 | 8, 9 | oveq12d 7289 | . . 3 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)) = (𝑂 /s ( ≃ph‘𝐽))) |
11 | unieq 4856 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
12 | 11 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ∪ 𝑗 = ∪ 𝐽) |
13 | pi1val.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
14 | toponuni 22061 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
16 | 15 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → 𝑋 = ∪ 𝐽) |
17 | 12, 16 | eqtr4d 2783 | . . 3 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ∪ 𝑗 = 𝑋) |
18 | topontop 22060 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
19 | 13, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
20 | pi1val.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
21 | ovexd 7306 | . . 3 ⊢ (𝜑 → (𝑂 /s ( ≃ph‘𝐽)) ∈ V) | |
22 | 3, 10, 17, 19, 20, 21 | ovmpodx 7418 | . 2 ⊢ (𝜑 → (𝐽 π1 𝑌) = (𝑂 /s ( ≃ph‘𝐽))) |
23 | 1, 22 | eqtrid 2792 | 1 ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∪ cuni 4845 ‘cfv 6432 (class class class)co 7271 ∈ cmpo 7273 /s cqus 17214 Topctop 22040 TopOnctopon 22057 ≃phcphtpc 24130 Ω1 comi 24162 π1 cpi1 24164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-topon 22058 df-pi1 24169 |
This theorem is referenced by: pi1bas 24199 pi1addf 24208 pi1addval 24209 pi1grplem 24210 |
Copyright terms: Public domain | W3C validator |