| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1val | Structured version Visualization version GIF version | ||
| Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1val.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
| Ref | Expression |
|---|---|
| pi1val | ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pi1val.g | . 2 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
| 2 | df-pi1 24915 | . . . 4 ⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)))) |
| 4 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → 𝑗 = 𝐽) | |
| 5 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
| 6 | 4, 5 | oveq12d 7408 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = (𝐽 Ω1 𝑌)) |
| 7 | pi1val.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
| 8 | 6, 7 | eqtr4di 2783 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = 𝑂) |
| 9 | 4 | fveq2d 6865 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → ( ≃ph‘𝑗) = ( ≃ph‘𝐽)) |
| 10 | 8, 9 | oveq12d 7408 | . . 3 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)) = (𝑂 /s ( ≃ph‘𝐽))) |
| 11 | unieq 4885 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ∪ 𝑗 = ∪ 𝐽) |
| 13 | pi1val.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 14 | toponuni 22808 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → 𝑋 = ∪ 𝐽) |
| 17 | 12, 16 | eqtr4d 2768 | . . 3 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ∪ 𝑗 = 𝑋) |
| 18 | topontop 22807 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 19 | 13, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 20 | pi1val.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 21 | ovexd 7425 | . . 3 ⊢ (𝜑 → (𝑂 /s ( ≃ph‘𝐽)) ∈ V) | |
| 22 | 3, 10, 17, 19, 20, 21 | ovmpodx 7543 | . 2 ⊢ (𝜑 → (𝐽 π1 𝑌) = (𝑂 /s ( ≃ph‘𝐽))) |
| 23 | 1, 22 | eqtrid 2777 | 1 ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cuni 4874 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 /s cqus 17475 Topctop 22787 TopOnctopon 22804 ≃phcphtpc 24875 Ω1 comi 24908 π1 cpi1 24910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-topon 22805 df-pi1 24915 |
| This theorem is referenced by: pi1bas 24945 pi1addf 24954 pi1addval 24955 pi1grplem 24956 |
| Copyright terms: Public domain | W3C validator |