![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pi1val | Structured version Visualization version GIF version |
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1val.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
Ref | Expression |
---|---|
pi1val | ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1val.g | . 2 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
2 | df-pi1 25055 | . . . 4 ⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)))) |
4 | simprl 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → 𝑗 = 𝐽) | |
5 | simprr 773 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
6 | 4, 5 | oveq12d 7449 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = (𝐽 Ω1 𝑌)) |
7 | pi1val.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
8 | 6, 7 | eqtr4di 2793 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = 𝑂) |
9 | 4 | fveq2d 6911 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → ( ≃ph‘𝑗) = ( ≃ph‘𝐽)) |
10 | 8, 9 | oveq12d 7449 | . . 3 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)) = (𝑂 /s ( ≃ph‘𝐽))) |
11 | unieq 4923 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ∪ 𝑗 = ∪ 𝐽) |
13 | pi1val.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
14 | toponuni 22936 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → 𝑋 = ∪ 𝐽) |
17 | 12, 16 | eqtr4d 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ∪ 𝑗 = 𝑋) |
18 | topontop 22935 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
19 | 13, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
20 | pi1val.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
21 | ovexd 7466 | . . 3 ⊢ (𝜑 → (𝑂 /s ( ≃ph‘𝐽)) ∈ V) | |
22 | 3, 10, 17, 19, 20, 21 | ovmpodx 7584 | . 2 ⊢ (𝜑 → (𝐽 π1 𝑌) = (𝑂 /s ( ≃ph‘𝐽))) |
23 | 1, 22 | eqtrid 2787 | 1 ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∪ cuni 4912 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 /s cqus 17552 Topctop 22915 TopOnctopon 22932 ≃phcphtpc 25015 Ω1 comi 25048 π1 cpi1 25050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-topon 22933 df-pi1 25055 |
This theorem is referenced by: pi1bas 25085 pi1addf 25094 pi1addval 25095 pi1grplem 25096 |
Copyright terms: Public domain | W3C validator |