MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1val Structured version   Visualization version   GIF version

Theorem pi1val 24200
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1val.o 𝑂 = (𝐽 Ω1 𝑌)
Assertion
Ref Expression
pi1val (𝜑𝐺 = (𝑂 /s ( ≃ph𝐽)))

Proof of Theorem pi1val
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1val.g . 2 𝐺 = (𝐽 π1 𝑌)
2 df-pi1 24171 . . . 4 π1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗)))
32a1i 11 . . 3 (𝜑 → π1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗))))
4 simprl 768 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑗 = 𝐽)
5 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑦 = 𝑌)
64, 5oveq12d 7293 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = (𝐽 Ω1 𝑌))
7 pi1val.o . . . . 5 𝑂 = (𝐽 Ω1 𝑌)
86, 7eqtr4di 2796 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = 𝑂)
94fveq2d 6778 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ( ≃ph𝑗) = ( ≃ph𝐽))
108, 9oveq12d 7293 . . 3 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗)) = (𝑂 /s ( ≃ph𝐽)))
11 unieq 4850 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
1211adantl 482 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝐽)
13 pi1val.1 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
14 toponuni 22063 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1513, 14syl 17 . . . . 5 (𝜑𝑋 = 𝐽)
1615adantr 481 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑋 = 𝐽)
1712, 16eqtr4d 2781 . . 3 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝑋)
18 topontop 22062 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1913, 18syl 17 . . 3 (𝜑𝐽 ∈ Top)
20 pi1val.2 . . 3 (𝜑𝑌𝑋)
21 ovexd 7310 . . 3 (𝜑 → (𝑂 /s ( ≃ph𝐽)) ∈ V)
223, 10, 17, 19, 20, 21ovmpodx 7424 . 2 (𝜑 → (𝐽 π1 𝑌) = (𝑂 /s ( ≃ph𝐽)))
231, 22eqtrid 2790 1 (𝜑𝐺 = (𝑂 /s ( ≃ph𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432   cuni 4839  cfv 6433  (class class class)co 7275  cmpo 7277   /s cqus 17216  Topctop 22042  TopOnctopon 22059  phcphtpc 24132   Ω1 comi 24164   π1 cpi1 24166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-topon 22060  df-pi1 24171
This theorem is referenced by:  pi1bas  24201  pi1addf  24210  pi1addval  24211  pi1grplem  24212
  Copyright terms: Public domain W3C validator