![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pi1val | Structured version Visualization version GIF version |
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
pi1val.g | β’ πΊ = (π½ Ο1 π) |
pi1val.1 | β’ (π β π½ β (TopOnβπ)) |
pi1val.2 | β’ (π β π β π) |
pi1val.o | β’ π = (π½ Ξ©1 π) |
Ref | Expression |
---|---|
pi1val | β’ (π β πΊ = (π /s ( βphβπ½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1val.g | . 2 β’ πΊ = (π½ Ο1 π) | |
2 | df-pi1 24755 | . . . 4 β’ Ο1 = (π β Top, π¦ β βͺ π β¦ ((π Ξ©1 π¦) /s ( βphβπ))) | |
3 | 2 | a1i 11 | . . 3 β’ (π β Ο1 = (π β Top, π¦ β βͺ π β¦ ((π Ξ©1 π¦) /s ( βphβπ)))) |
4 | simprl 767 | . . . . . 6 β’ ((π β§ (π = π½ β§ π¦ = π)) β π = π½) | |
5 | simprr 769 | . . . . . 6 β’ ((π β§ (π = π½ β§ π¦ = π)) β π¦ = π) | |
6 | 4, 5 | oveq12d 7429 | . . . . 5 β’ ((π β§ (π = π½ β§ π¦ = π)) β (π Ξ©1 π¦) = (π½ Ξ©1 π)) |
7 | pi1val.o | . . . . 5 β’ π = (π½ Ξ©1 π) | |
8 | 6, 7 | eqtr4di 2788 | . . . 4 β’ ((π β§ (π = π½ β§ π¦ = π)) β (π Ξ©1 π¦) = π) |
9 | 4 | fveq2d 6894 | . . . 4 β’ ((π β§ (π = π½ β§ π¦ = π)) β ( βphβπ) = ( βphβπ½)) |
10 | 8, 9 | oveq12d 7429 | . . 3 β’ ((π β§ (π = π½ β§ π¦ = π)) β ((π Ξ©1 π¦) /s ( βphβπ)) = (π /s ( βphβπ½))) |
11 | unieq 4918 | . . . . 5 β’ (π = π½ β βͺ π = βͺ π½) | |
12 | 11 | adantl 480 | . . . 4 β’ ((π β§ π = π½) β βͺ π = βͺ π½) |
13 | pi1val.1 | . . . . . 6 β’ (π β π½ β (TopOnβπ)) | |
14 | toponuni 22636 | . . . . . 6 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
15 | 13, 14 | syl 17 | . . . . 5 β’ (π β π = βͺ π½) |
16 | 15 | adantr 479 | . . . 4 β’ ((π β§ π = π½) β π = βͺ π½) |
17 | 12, 16 | eqtr4d 2773 | . . 3 β’ ((π β§ π = π½) β βͺ π = π) |
18 | topontop 22635 | . . . 4 β’ (π½ β (TopOnβπ) β π½ β Top) | |
19 | 13, 18 | syl 17 | . . 3 β’ (π β π½ β Top) |
20 | pi1val.2 | . . 3 β’ (π β π β π) | |
21 | ovexd 7446 | . . 3 β’ (π β (π /s ( βphβπ½)) β V) | |
22 | 3, 10, 17, 19, 20, 21 | ovmpodx 7561 | . 2 β’ (π β (π½ Ο1 π) = (π /s ( βphβπ½))) |
23 | 1, 22 | eqtrid 2782 | 1 β’ (π β πΊ = (π /s ( βphβπ½))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 Vcvv 3472 βͺ cuni 4907 βcfv 6542 (class class class)co 7411 β cmpo 7413 /s cqus 17455 Topctop 22615 TopOnctopon 22632 βphcphtpc 24715 Ξ©1 comi 24748 Ο1 cpi1 24750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-topon 22633 df-pi1 24755 |
This theorem is referenced by: pi1bas 24785 pi1addf 24794 pi1addval 24795 pi1grplem 24796 |
Copyright terms: Public domain | W3C validator |