Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pi1val | Structured version Visualization version GIF version |
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1val.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
Ref | Expression |
---|---|
pi1val | ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1val.g | . 2 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
2 | df-pi1 24171 | . . . 4 ⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)))) |
4 | simprl 768 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → 𝑗 = 𝐽) | |
5 | simprr 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
6 | 4, 5 | oveq12d 7293 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = (𝐽 Ω1 𝑌)) |
7 | pi1val.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
8 | 6, 7 | eqtr4di 2796 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = 𝑂) |
9 | 4 | fveq2d 6778 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → ( ≃ph‘𝑗) = ( ≃ph‘𝐽)) |
10 | 8, 9 | oveq12d 7293 | . . 3 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)) = (𝑂 /s ( ≃ph‘𝐽))) |
11 | unieq 4850 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
12 | 11 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ∪ 𝑗 = ∪ 𝐽) |
13 | pi1val.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
14 | toponuni 22063 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
16 | 15 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → 𝑋 = ∪ 𝐽) |
17 | 12, 16 | eqtr4d 2781 | . . 3 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ∪ 𝑗 = 𝑋) |
18 | topontop 22062 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
19 | 13, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
20 | pi1val.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
21 | ovexd 7310 | . . 3 ⊢ (𝜑 → (𝑂 /s ( ≃ph‘𝐽)) ∈ V) | |
22 | 3, 10, 17, 19, 20, 21 | ovmpodx 7424 | . 2 ⊢ (𝜑 → (𝐽 π1 𝑌) = (𝑂 /s ( ≃ph‘𝐽))) |
23 | 1, 22 | eqtrid 2790 | 1 ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 /s cqus 17216 Topctop 22042 TopOnctopon 22059 ≃phcphtpc 24132 Ω1 comi 24164 π1 cpi1 24166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-topon 22060 df-pi1 24171 |
This theorem is referenced by: pi1bas 24201 pi1addf 24210 pi1addval 24211 pi1grplem 24212 |
Copyright terms: Public domain | W3C validator |