MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1val Structured version   Visualization version   GIF version

Theorem pi1val 24106
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1val.o 𝑂 = (𝐽 Ω1 𝑌)
Assertion
Ref Expression
pi1val (𝜑𝐺 = (𝑂 /s ( ≃ph𝐽)))

Proof of Theorem pi1val
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1val.g . 2 𝐺 = (𝐽 π1 𝑌)
2 df-pi1 24077 . . . 4 π1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗)))
32a1i 11 . . 3 (𝜑 → π1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗))))
4 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑗 = 𝐽)
5 simprr 769 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑦 = 𝑌)
64, 5oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = (𝐽 Ω1 𝑌))
7 pi1val.o . . . . 5 𝑂 = (𝐽 Ω1 𝑌)
86, 7eqtr4di 2797 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = 𝑂)
94fveq2d 6760 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ( ≃ph𝑗) = ( ≃ph𝐽))
108, 9oveq12d 7273 . . 3 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗)) = (𝑂 /s ( ≃ph𝐽)))
11 unieq 4847 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
1211adantl 481 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝐽)
13 pi1val.1 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
14 toponuni 21971 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1513, 14syl 17 . . . . 5 (𝜑𝑋 = 𝐽)
1615adantr 480 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑋 = 𝐽)
1712, 16eqtr4d 2781 . . 3 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝑋)
18 topontop 21970 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1913, 18syl 17 . . 3 (𝜑𝐽 ∈ Top)
20 pi1val.2 . . 3 (𝜑𝑌𝑋)
21 ovexd 7290 . . 3 (𝜑 → (𝑂 /s ( ≃ph𝐽)) ∈ V)
223, 10, 17, 19, 20, 21ovmpodx 7402 . 2 (𝜑 → (𝐽 π1 𝑌) = (𝑂 /s ( ≃ph𝐽)))
231, 22eqtrid 2790 1 (𝜑𝐺 = (𝑂 /s ( ≃ph𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   cuni 4836  cfv 6418  (class class class)co 7255  cmpo 7257   /s cqus 17133  Topctop 21950  TopOnctopon 21967  phcphtpc 24038   Ω1 comi 24070   π1 cpi1 24072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-topon 21968  df-pi1 24077
This theorem is referenced by:  pi1bas  24107  pi1addf  24116  pi1addval  24117  pi1grplem  24118
  Copyright terms: Public domain W3C validator