MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1val Structured version   Visualization version   GIF version

Theorem pi1val 23643
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1val.o 𝑂 = (𝐽 Ω1 𝑌)
Assertion
Ref Expression
pi1val (𝜑𝐺 = (𝑂 /s ( ≃ph𝐽)))

Proof of Theorem pi1val
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1val.g . 2 𝐺 = (𝐽 π1 𝑌)
2 df-pi1 23614 . . . 4 π1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗)))
32a1i 11 . . 3 (𝜑 → π1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗))))
4 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑗 = 𝐽)
5 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑦 = 𝑌)
64, 5oveq12d 7176 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = (𝐽 Ω1 𝑌))
7 pi1val.o . . . . 5 𝑂 = (𝐽 Ω1 𝑌)
86, 7syl6eqr 2876 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = 𝑂)
94fveq2d 6676 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ( ≃ph𝑗) = ( ≃ph𝐽))
108, 9oveq12d 7176 . . 3 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗)) = (𝑂 /s ( ≃ph𝐽)))
11 unieq 4851 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
1211adantl 484 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝐽)
13 pi1val.1 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
14 toponuni 21524 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1513, 14syl 17 . . . . 5 (𝜑𝑋 = 𝐽)
1615adantr 483 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑋 = 𝐽)
1712, 16eqtr4d 2861 . . 3 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝑋)
18 topontop 21523 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1913, 18syl 17 . . 3 (𝜑𝐽 ∈ Top)
20 pi1val.2 . . 3 (𝜑𝑌𝑋)
21 ovexd 7193 . . 3 (𝜑 → (𝑂 /s ( ≃ph𝐽)) ∈ V)
223, 10, 17, 19, 20, 21ovmpodx 7303 . 2 (𝜑 → (𝐽 π1 𝑌) = (𝑂 /s ( ≃ph𝐽)))
231, 22syl5eq 2870 1 (𝜑𝐺 = (𝑂 /s ( ≃ph𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496   cuni 4840  cfv 6357  (class class class)co 7158  cmpo 7160   /s cqus 16780  Topctop 21503  TopOnctopon 21520  phcphtpc 23575   Ω1 comi 23607   π1 cpi1 23609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-topon 21521  df-pi1 23614
This theorem is referenced by:  pi1bas  23644  pi1addf  23653  pi1addval  23654  pi1grplem  23655
  Copyright terms: Public domain W3C validator