Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-plusf | Structured version Visualization version GIF version |
Description: Define group addition function. Usually we will use +g directly instead of +𝑓, and they have the same behavior in most cases. The main advantage of +𝑓 for any magma is that it is a guaranteed function (mgmplusf 17933), while +g only has closure (mgmcl 17926). (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df-plusf | ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplusf 17920 | . 2 class +𝑓 | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3409 | . . 3 class V | |
4 | vx | . . . 4 setvar 𝑥 | |
5 | vy | . . . 4 setvar 𝑦 | |
6 | 2 | cv 1537 | . . . . 5 class 𝑔 |
7 | cbs 16546 | . . . . 5 class Base | |
8 | 6, 7 | cfv 6339 | . . . 4 class (Base‘𝑔) |
9 | 4 | cv 1537 | . . . . 5 class 𝑥 |
10 | 5 | cv 1537 | . . . . 5 class 𝑦 |
11 | cplusg 16628 | . . . . . 6 class +g | |
12 | 6, 11 | cfv 6339 | . . . . 5 class (+g‘𝑔) |
13 | 9, 10, 12 | co 7155 | . . . 4 class (𝑥(+g‘𝑔)𝑦) |
14 | 4, 5, 8, 8, 13 | cmpo 7157 | . . 3 class (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦)) |
15 | 2, 3, 14 | cmpt 5115 | . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) |
16 | 1, 15 | wceq 1538 | 1 wff +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) |
Colors of variables: wff setvar class |
This definition is referenced by: plusffval 17929 |
Copyright terms: Public domain | W3C validator |