![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgmcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
mgmcl.b | ⊢ 𝐵 = (Base‘𝑀) |
mgmcl.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
mgmcl | ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | mgmcl.o | . . . . 5 ⊢ ⚬ = (+g‘𝑀) | |
3 | 1, 2 | ismgm 18608 | . . . 4 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
4 | 3 | ibi 266 | . . 3 ⊢ (𝑀 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵) |
5 | ovrspc2v 7452 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) | |
6 | 5 | expcom 412 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵 → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝑀 ∈ Mgm → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
8 | 7 | 3impib 1113 | 1 ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 Mgmcmgm 18605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-nul 5310 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 df-ov 7429 df-mgm 18607 |
This theorem is referenced by: isnmgm 18611 mgmsscl 18612 mgmplusf 18617 issstrmgm 18620 gsummgmpropd 18648 mgmhmf1o 18667 idmgmhm 18668 issubmgm2 18670 rabsubmgmd 18671 mgmhmco 18681 mgmhmeql 18683 submgmacs 18684 sgrpcl 18693 mndcl 18709 gsumsgrpccat 18799 smndex1sgrp 18867 dfgrp2 18926 dfgrp3e 19003 mulgnncl 19051 mulgnndir 19065 rngcl 20111 c0mgm 20405 c0snmgmhm 20408 psraddcl 21890 mgmplusgiopALT 47334 |
Copyright terms: Public domain | W3C validator |