MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmcl Structured version   Visualization version   GIF version

Theorem mgmcl 18329
Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
Hypotheses
Ref Expression
mgmcl.b 𝐵 = (Base‘𝑀)
mgmcl.o = (+g𝑀)
Assertion
Ref Expression
mgmcl ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem mgmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmcl.b . . . . 5 𝐵 = (Base‘𝑀)
2 mgmcl.o . . . . 5 = (+g𝑀)
31, 2ismgm 18327 . . . 4 (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
43ibi 266 . . 3 (𝑀 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵)
5 ovrspc2v 7301 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵) → (𝑋 𝑌) ∈ 𝐵)
65expcom 414 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵 → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
74, 6syl 17 . 2 (𝑀 ∈ Mgm → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
873impib 1115 1 ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Mgmcmgm 18324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-mgm 18326
This theorem is referenced by:  isnmgm  18330  mgmsscl  18331  mgmplusf  18336  issstrmgm  18337  gsummgmpropd  18365  mndcl  18393  gsumsgrpccat  18478  smndex1sgrp  18547  dfgrp2  18604  dfgrp3e  18675  mulgnncl  18719  mulgnndir  18732  mgmhmf1o  45341  idmgmhm  45342  issubmgm2  45344  rabsubmgmd  45345  mgmhmco  45355  mgmhmeql  45357  submgmacs  45358  mgmplusgiopALT  45388  rngcl  45441  c0mgm  45467  c0snmgmhm  45472
  Copyright terms: Public domain W3C validator