| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgmcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgmcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| mgmcl.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| mgmcl | ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | mgmcl.o | . . . . 5 ⊢ ⚬ = (+g‘𝑀) | |
| 3 | 1, 2 | ismgm 18550 | . . . 4 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 4 | 3 | ibi 267 | . . 3 ⊢ (𝑀 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵) |
| 5 | ovrspc2v 7395 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) | |
| 6 | 5 | expcom 413 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵 → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝑀 ∈ Mgm → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
| 8 | 7 | 3impib 1116 | 1 ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Mgmcmgm 18547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-mgm 18549 |
| This theorem is referenced by: isnmgm 18553 mgmsscl 18554 mgmplusf 18559 issstrmgm 18562 gsummgmpropd 18590 mgmhmf1o 18609 idmgmhm 18610 issubmgm2 18612 rabsubmgmd 18613 mgmhmco 18623 mgmhmeql 18625 submgmacs 18626 sgrpcl 18635 mndcl 18651 gsumsgrpccat 18749 smndex1sgrp 18817 dfgrp2 18876 dfgrp3e 18954 mulgnncl 19003 mulgnndir 19017 rngcl 20084 c0mgm 20379 c0snmgmhm 20382 psraddcl 21880 mgmplusgiopALT 48175 |
| Copyright terms: Public domain | W3C validator |