| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgmcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgmcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| mgmcl.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| mgmcl | ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | mgmcl.o | . . . . 5 ⊢ ⚬ = (+g‘𝑀) | |
| 3 | 1, 2 | ismgm 18549 | . . . 4 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 4 | 3 | ibi 267 | . . 3 ⊢ (𝑀 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵) |
| 5 | ovrspc2v 7372 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) | |
| 6 | 5 | expcom 413 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵 → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝑀 ∈ Mgm → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
| 8 | 7 | 3impib 1116 | 1 ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Mgmcmgm 18546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-mgm 18548 |
| This theorem is referenced by: isnmgm 18552 mgmsscl 18553 mgmplusf 18558 issstrmgm 18561 gsummgmpropd 18589 mgmhmf1o 18608 idmgmhm 18609 issubmgm2 18611 rabsubmgmd 18612 mgmhmco 18622 mgmhmeql 18624 submgmacs 18625 sgrpcl 18634 mndcl 18650 gsumsgrpccat 18748 smndex1sgrp 18816 dfgrp2 18875 dfgrp3e 18953 mulgnncl 19002 mulgnndir 19016 rngcl 20082 c0mgm 20377 c0snmgmhm 20380 psraddcl 21875 mgmplusgiopALT 48293 |
| Copyright terms: Public domain | W3C validator |