MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmcl Structured version   Visualization version   GIF version

Theorem mgmcl 17857
Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
Hypotheses
Ref Expression
mgmcl.b 𝐵 = (Base‘𝑀)
mgmcl.o = (+g𝑀)
Assertion
Ref Expression
mgmcl ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem mgmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmcl.b . . . . 5 𝐵 = (Base‘𝑀)
2 mgmcl.o . . . . 5 = (+g𝑀)
31, 2ismgm 17855 . . . 4 (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
43ibi 269 . . 3 (𝑀 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵)
5 ovrspc2v 7184 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵) → (𝑋 𝑌) ∈ 𝐵)
65expcom 416 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵 → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
74, 6syl 17 . 2 (𝑀 ∈ Mgm → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
873impib 1112 1 ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  Mgmcmgm 17852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-ov 7161  df-mgm 17854
This theorem is referenced by:  isnmgm  17858  mgmsscl  17859  mgmplusf  17864  issstrmgm  17865  gsummgmpropd  17893  mndcl  17921  gsumsgrpccat  18006  smndex1sgrp  18075  dfgrp2  18130  dfgrp3e  18201  mulgnncl  18245  mulgnndir  18258  mgmhmf1o  44061  idmgmhm  44062  issubmgm2  44064  rabsubmgmd  44065  mgmhmco  44075  mgmhmeql  44077  submgmacs  44078  mgmplusgiopALT  44108  rngcl  44161  c0mgm  44187  c0snmgmhm  44192
  Copyright terms: Public domain W3C validator