| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgmcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgmcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| mgmcl.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| mgmcl | ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | mgmcl.o | . . . . 5 ⊢ ⚬ = (+g‘𝑀) | |
| 3 | 1, 2 | ismgm 18568 | . . . 4 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 4 | 3 | ibi 267 | . . 3 ⊢ (𝑀 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵) |
| 5 | ovrspc2v 7413 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) | |
| 6 | 5 | expcom 413 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵 → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝑀 ∈ Mgm → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
| 8 | 7 | 3impib 1116 | 1 ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Mgmcmgm 18565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-mgm 18567 |
| This theorem is referenced by: isnmgm 18571 mgmsscl 18572 mgmplusf 18577 issstrmgm 18580 gsummgmpropd 18608 mgmhmf1o 18627 idmgmhm 18628 issubmgm2 18630 rabsubmgmd 18631 mgmhmco 18641 mgmhmeql 18643 submgmacs 18644 sgrpcl 18653 mndcl 18669 gsumsgrpccat 18767 smndex1sgrp 18835 dfgrp2 18894 dfgrp3e 18972 mulgnncl 19021 mulgnndir 19035 rngcl 20073 c0mgm 20368 c0snmgmhm 20371 psraddcl 21847 mgmplusgiopALT 48179 |
| Copyright terms: Public domain | W3C validator |