MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmcl Structured version   Visualization version   GIF version

Theorem mgmcl 18656
Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
Hypotheses
Ref Expression
mgmcl.b 𝐵 = (Base‘𝑀)
mgmcl.o = (+g𝑀)
Assertion
Ref Expression
mgmcl ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem mgmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmcl.b . . . . 5 𝐵 = (Base‘𝑀)
2 mgmcl.o . . . . 5 = (+g𝑀)
31, 2ismgm 18654 . . . 4 (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
43ibi 267 . . 3 (𝑀 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵)
5 ovrspc2v 7457 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵) → (𝑋 𝑌) ∈ 𝐵)
65expcom 413 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵 → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
74, 6syl 17 . 2 (𝑀 ∈ Mgm → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
873impib 1117 1 ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Mgmcmgm 18651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-mgm 18653
This theorem is referenced by:  isnmgm  18657  mgmsscl  18658  mgmplusf  18663  issstrmgm  18666  gsummgmpropd  18694  mgmhmf1o  18713  idmgmhm  18714  issubmgm2  18716  rabsubmgmd  18717  mgmhmco  18727  mgmhmeql  18729  submgmacs  18730  sgrpcl  18739  mndcl  18755  gsumsgrpccat  18853  smndex1sgrp  18921  dfgrp2  18980  dfgrp3e  19058  mulgnncl  19107  mulgnndir  19121  rngcl  20161  c0mgm  20459  c0snmgmhm  20462  psraddcl  21958  mgmplusgiopALT  48110
  Copyright terms: Public domain W3C validator