MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmplusf Structured version   Visualization version   GIF version

Theorem mgmplusf 18433
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgmplusf.1 𝐵 = (Base‘𝑀)
mgmplusf.2 = (+𝑓𝑀)
Assertion
Ref Expression
mgmplusf (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem mgmplusf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmplusf.1 . . . . 5 𝐵 = (Base‘𝑀)
2 eqid 2737 . . . . 5 (+g𝑀) = (+g𝑀)
31, 2mgmcl 18426 . . . 4 ((𝑀 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
433expb 1120 . . 3 ((𝑀 ∈ Mgm ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
54ralrimivva 3194 . 2 (𝑀 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵)
6 mgmplusf.2 . . . 4 = (+𝑓𝑀)
71, 2, 6plusffval 18429 . . 3 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦))
87fmpo 7980 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵 :(𝐵 × 𝐵)⟶𝐵)
95, 8sylib 217 1 (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3062   × cxp 5622  wf 6479  cfv 6483  (class class class)co 7341  Basecbs 17009  +gcplusg 17059  +𝑓cplusf 18420  Mgmcmgm 18421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-fv 6491  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7903  df-2nd 7904  df-plusf 18422  df-mgm 18423
This theorem is referenced by:  mgmb1mgm1  18436  mndplusf  18500  mgmplusfreseq  45745
  Copyright terms: Public domain W3C validator