MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmplusf Structured version   Visualization version   GIF version

Theorem mgmplusf 18628
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgmplusf.1 𝐵 = (Base‘𝑀)
mgmplusf.2 = (+𝑓𝑀)
Assertion
Ref Expression
mgmplusf (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem mgmplusf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmplusf.1 . . . . 5 𝐵 = (Base‘𝑀)
2 eqid 2735 . . . . 5 (+g𝑀) = (+g𝑀)
31, 2mgmcl 18621 . . . 4 ((𝑀 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
433expb 1120 . . 3 ((𝑀 ∈ Mgm ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
54ralrimivva 3187 . 2 (𝑀 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵)
6 mgmplusf.2 . . . 4 = (+𝑓𝑀)
71, 2, 6plusffval 18624 . . 3 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦))
87fmpo 8067 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵 :(𝐵 × 𝐵)⟶𝐵)
95, 8sylib 218 1 (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wral 3051   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  +𝑓cplusf 18615  Mgmcmgm 18616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-plusf 18617  df-mgm 18618
This theorem is referenced by:  mgmb1mgm1  18633  mndplusf  18730  mgmplusfreseq  48140
  Copyright terms: Public domain W3C validator