MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusffval Structured version   Visualization version   GIF version

Theorem plusffval 18580
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusffval = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem plusffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2 = (+𝑓𝐺)
2 fveq2 6861 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 plusffval.1 . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2783 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6861 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 plusffval.2 . . . . . . 7 + = (+g𝐺)
75, 6eqtr4di 2783 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
87oveqd 7407 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
94, 4, 8mpoeq123dv 7467 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
10 df-plusf 18573 . . . 4 +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
113fvexi 6875 . . . . 5 𝐵 ∈ V
126fvexi 6875 . . . . . . 7 + ∈ V
1312rnex 7889 . . . . . 6 ran + ∈ V
14 p0ex 5342 . . . . . 6 {∅} ∈ V
1513, 14unex 7723 . . . . 5 (ran + ∪ {∅}) ∈ V
16 df-ov 7393 . . . . . . 7 (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩)
17 fvrn0 6891 . . . . . . 7 ( + ‘⟨𝑥, 𝑦⟩) ∈ (ran + ∪ {∅})
1816, 17eqeltri 2825 . . . . . 6 (𝑥 + 𝑦) ∈ (ran + ∪ {∅})
1918rgen2w 3050 . . . . 5 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) ∈ (ran + ∪ {∅})
2011, 11, 15, 19mpoexw 8060 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V
219, 10, 20fvmpt 6971 . . 3 (𝐺 ∈ V → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
22 fvprc 6853 . . . 4 𝐺 ∈ V → (+𝑓𝐺) = ∅)
23 fvprc 6853 . . . . . . 7 𝐺 ∈ V → (Base‘𝐺) = ∅)
243, 23eqtrid 2777 . . . . . 6 𝐺 ∈ V → 𝐵 = ∅)
2524olcd 874 . . . . 5 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
26 0mpo0 7475 . . . . 5 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = ∅)
2725, 26syl 17 . . . 4 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = ∅)
2822, 27eqtr4d 2768 . . 3 𝐺 ∈ V → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
2921, 28pm2.61i 182 . 2 (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
301, 29eqtri 2753 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  c0 4299  {csn 4592  cop 4598  ran crn 5642  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  +gcplusg 17227  +𝑓cplusf 18571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-plusf 18573
This theorem is referenced by:  plusfval  18581  plusfeq  18582  plusffn  18583  mgmplusf  18584  rlmscaf  21121  istgp2  23985  oppgtmd  23991  submtmd  23998  prdstmdd  24018  ressplusf  32892  pl1cn  33952
  Copyright terms: Public domain W3C validator