MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusffval Structured version   Visualization version   GIF version

Theorem plusffval 18684
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusffval = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem plusffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2 = (+𝑓𝐺)
2 fveq2 6920 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 plusffval.1 . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2798 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6920 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 plusffval.2 . . . . . . 7 + = (+g𝐺)
75, 6eqtr4di 2798 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
87oveqd 7465 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
94, 4, 8mpoeq123dv 7525 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
10 df-plusf 18677 . . . 4 +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
113fvexi 6934 . . . . 5 𝐵 ∈ V
126fvexi 6934 . . . . . . 7 + ∈ V
1312rnex 7950 . . . . . 6 ran + ∈ V
14 p0ex 5402 . . . . . 6 {∅} ∈ V
1513, 14unex 7779 . . . . 5 (ran + ∪ {∅}) ∈ V
16 df-ov 7451 . . . . . . 7 (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩)
17 fvrn0 6950 . . . . . . 7 ( + ‘⟨𝑥, 𝑦⟩) ∈ (ran + ∪ {∅})
1816, 17eqeltri 2840 . . . . . 6 (𝑥 + 𝑦) ∈ (ran + ∪ {∅})
1918rgen2w 3072 . . . . 5 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) ∈ (ran + ∪ {∅})
2011, 11, 15, 19mpoexw 8119 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V
219, 10, 20fvmpt 7029 . . 3 (𝐺 ∈ V → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
22 fvprc 6912 . . . 4 𝐺 ∈ V → (+𝑓𝐺) = ∅)
23 fvprc 6912 . . . . . . 7 𝐺 ∈ V → (Base‘𝐺) = ∅)
243, 23eqtrid 2792 . . . . . 6 𝐺 ∈ V → 𝐵 = ∅)
2524olcd 873 . . . . 5 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
26 0mpo0 7533 . . . . 5 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = ∅)
2725, 26syl 17 . . . 4 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = ∅)
2822, 27eqtr4d 2783 . . 3 𝐺 ∈ V → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
2921, 28pm2.61i 182 . 2 (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
301, 29eqtri 2768 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  c0 4352  {csn 4648  cop 4654  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311  +𝑓cplusf 18675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-plusf 18677
This theorem is referenced by:  plusfval  18685  plusfeq  18686  plusffn  18687  mgmplusf  18688  rlmscaf  21237  istgp2  24120  oppgtmd  24126  submtmd  24133  prdstmdd  24153  ressplusf  32930  pl1cn  33901
  Copyright terms: Public domain W3C validator