Step | Hyp | Ref
| Expression |
1 | | plusffval.3 |
. 2
⊢ ⨣ =
(+𝑓‘𝐺) |
2 | | fveq2 6496 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
3 | | plusffval.1 |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
4 | 2, 3 | syl6eqr 2826 |
. . . . 5
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
5 | | fveq2 6496 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) |
6 | | plusffval.2 |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
7 | 5, 6 | syl6eqr 2826 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
8 | 7 | oveqd 6991 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
9 | 4, 4, 8 | mpoeq123dv 7045 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
10 | | df-plusf 17721 |
. . . 4
⊢
+𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) |
11 | | df-ov 6977 |
. . . . . . . 8
⊢ (𝑥 + 𝑦) = ( + ‘〈𝑥, 𝑦〉) |
12 | | fvrn0 6524 |
. . . . . . . 8
⊢ ( +
‘〈𝑥, 𝑦〉) ∈ (ran + ∪
{∅}) |
13 | 11, 12 | eqeltri 2856 |
. . . . . . 7
⊢ (𝑥 + 𝑦) ∈ (ran + ∪
{∅}) |
14 | 13 | rgen2w 3095 |
. . . . . 6
⊢
∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ (ran + ∪
{∅}) |
15 | | eqid 2772 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
16 | 15 | fmpo 7572 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ (ran + ∪ {∅}) ↔
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)):(𝐵 × 𝐵)⟶(ran + ∪
{∅})) |
17 | 14, 16 | mpbi 222 |
. . . . 5
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)):(𝐵 × 𝐵)⟶(ran + ∪
{∅}) |
18 | 3 | fvexi 6510 |
. . . . . 6
⊢ 𝐵 ∈ V |
19 | 18, 18 | xpex 7291 |
. . . . 5
⊢ (𝐵 × 𝐵) ∈ V |
20 | 6 | fvexi 6510 |
. . . . . . 7
⊢ + ∈
V |
21 | 20 | rnex 7430 |
. . . . . 6
⊢ ran + ∈
V |
22 | | p0ex 5133 |
. . . . . 6
⊢ {∅}
∈ V |
23 | 21, 22 | unex 7284 |
. . . . 5
⊢ (ran
+ ∪
{∅}) ∈ V |
24 | | fex2 7451 |
. . . . 5
⊢ (((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)):(𝐵 × 𝐵)⟶(ran + ∪ {∅}) ∧
(𝐵 × 𝐵) ∈ V ∧ (ran + ∪
{∅}) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V) |
25 | 17, 19, 23, 24 | mp3an 1440 |
. . . 4
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V |
26 | 9, 10, 25 | fvmpt 6593 |
. . 3
⊢ (𝐺 ∈ V →
(+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
27 | | fvprc 6489 |
. . . . 5
⊢ (¬
𝐺 ∈ V →
(+𝑓‘𝐺) = ∅) |
28 | | mpo0 7053 |
. . . . 5
⊢ (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + 𝑦)) = ∅ |
29 | 27, 28 | syl6eqr 2826 |
. . . 4
⊢ (¬
𝐺 ∈ V →
(+𝑓‘𝐺) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + 𝑦))) |
30 | | fvprc 6489 |
. . . . . 6
⊢ (¬
𝐺 ∈ V →
(Base‘𝐺) =
∅) |
31 | 3, 30 | syl5eq 2820 |
. . . . 5
⊢ (¬
𝐺 ∈ V → 𝐵 = ∅) |
32 | | mpoeq12 7043 |
. . . . 5
⊢ ((𝐵 = ∅ ∧ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + 𝑦))) |
33 | 31, 31, 32 | syl2anc 576 |
. . . 4
⊢ (¬
𝐺 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + 𝑦))) |
34 | 29, 33 | eqtr4d 2811 |
. . 3
⊢ (¬
𝐺 ∈ V →
(+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
35 | 26, 34 | pm2.61i 177 |
. 2
⊢
(+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
36 | 1, 35 | eqtri 2796 |
1
⊢ ⨣ =
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |