Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plusffval | Structured version Visualization version GIF version |
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffval.2 | ⊢ + = (+g‘𝐺) |
plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusffval | ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.3 | . 2 ⊢ ⨣ = (+𝑓‘𝐺) | |
2 | fveq2 6756 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
3 | plusffval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 2, 3 | eqtr4di 2797 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
5 | fveq2 6756 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
6 | plusffval.2 | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
7 | 5, 6 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
8 | 7 | oveqd 7272 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
9 | 4, 4, 8 | mpoeq123dv 7328 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
10 | df-plusf 18240 | . . . 4 ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) | |
11 | 3 | fvexi 6770 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | 6 | fvexi 6770 | . . . . . . 7 ⊢ + ∈ V |
13 | 12 | rnex 7733 | . . . . . 6 ⊢ ran + ∈ V |
14 | p0ex 5302 | . . . . . 6 ⊢ {∅} ∈ V | |
15 | 13, 14 | unex 7574 | . . . . 5 ⊢ (ran + ∪ {∅}) ∈ V |
16 | df-ov 7258 | . . . . . . 7 ⊢ (𝑥 + 𝑦) = ( + ‘〈𝑥, 𝑦〉) | |
17 | fvrn0 6784 | . . . . . . 7 ⊢ ( + ‘〈𝑥, 𝑦〉) ∈ (ran + ∪ {∅}) | |
18 | 16, 17 | eqeltri 2835 | . . . . . 6 ⊢ (𝑥 + 𝑦) ∈ (ran + ∪ {∅}) |
19 | 18 | rgen2w 3076 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ (ran + ∪ {∅}) |
20 | 11, 11, 15, 19 | mpoexw 7892 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V |
21 | 9, 10, 20 | fvmpt 6857 | . . 3 ⊢ (𝐺 ∈ V → (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
22 | fvprc 6748 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (+𝑓‘𝐺) = ∅) | |
23 | fvprc 6748 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
24 | 3, 23 | eqtrid 2790 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
25 | 24 | olcd 870 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
26 | 0mpo0 7336 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) = ∅) | |
27 | 25, 26 | syl 17 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) = ∅) |
28 | 22, 27 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝐺 ∈ V → (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
29 | 21, 28 | pm2.61i 182 | . 2 ⊢ (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
30 | 1, 29 | eqtri 2766 | 1 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ∅c0 4253 {csn 4558 〈cop 4564 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 +gcplusg 16888 +𝑓cplusf 18238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-plusf 18240 |
This theorem is referenced by: plusfval 18248 plusfeq 18249 plusffn 18250 mgmplusf 18251 rlmscaf 20392 istgp2 23150 oppgtmd 23156 submtmd 23163 prdstmdd 23183 ressplusf 31137 pl1cn 31807 |
Copyright terms: Public domain | W3C validator |