Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plusffval | Structured version Visualization version GIF version |
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffval.2 | ⊢ + = (+g‘𝐺) |
plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusffval | ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.3 | . 2 ⊢ ⨣ = (+𝑓‘𝐺) | |
2 | fveq2 6774 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
3 | plusffval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 2, 3 | eqtr4di 2796 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
5 | fveq2 6774 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
6 | plusffval.2 | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
7 | 5, 6 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
8 | 7 | oveqd 7292 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
9 | 4, 4, 8 | mpoeq123dv 7350 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
10 | df-plusf 18325 | . . . 4 ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) | |
11 | 3 | fvexi 6788 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | 6 | fvexi 6788 | . . . . . . 7 ⊢ + ∈ V |
13 | 12 | rnex 7759 | . . . . . 6 ⊢ ran + ∈ V |
14 | p0ex 5307 | . . . . . 6 ⊢ {∅} ∈ V | |
15 | 13, 14 | unex 7596 | . . . . 5 ⊢ (ran + ∪ {∅}) ∈ V |
16 | df-ov 7278 | . . . . . . 7 ⊢ (𝑥 + 𝑦) = ( + ‘〈𝑥, 𝑦〉) | |
17 | fvrn0 6802 | . . . . . . 7 ⊢ ( + ‘〈𝑥, 𝑦〉) ∈ (ran + ∪ {∅}) | |
18 | 16, 17 | eqeltri 2835 | . . . . . 6 ⊢ (𝑥 + 𝑦) ∈ (ran + ∪ {∅}) |
19 | 18 | rgen2w 3077 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ (ran + ∪ {∅}) |
20 | 11, 11, 15, 19 | mpoexw 7919 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V |
21 | 9, 10, 20 | fvmpt 6875 | . . 3 ⊢ (𝐺 ∈ V → (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
22 | fvprc 6766 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (+𝑓‘𝐺) = ∅) | |
23 | fvprc 6766 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
24 | 3, 23 | eqtrid 2790 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
25 | 24 | olcd 871 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
26 | 0mpo0 7358 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) = ∅) | |
27 | 25, 26 | syl 17 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) = ∅) |
28 | 22, 27 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝐺 ∈ V → (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
29 | 21, 28 | pm2.61i 182 | . 2 ⊢ (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
30 | 1, 29 | eqtri 2766 | 1 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ∅c0 4256 {csn 4561 〈cop 4567 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Basecbs 16912 +gcplusg 16962 +𝑓cplusf 18323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-plusf 18325 |
This theorem is referenced by: plusfval 18333 plusfeq 18334 plusffn 18335 mgmplusf 18336 rlmscaf 20479 istgp2 23242 oppgtmd 23248 submtmd 23255 prdstmdd 23275 ressplusf 31235 pl1cn 31905 |
Copyright terms: Public domain | W3C validator |