MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusffval Structured version   Visualization version   GIF version

Theorem plusffval 18092
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusffval = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem plusffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2 = (+𝑓𝐺)
2 fveq2 6706 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 plusffval.1 . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2792 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6706 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 plusffval.2 . . . . . . 7 + = (+g𝐺)
75, 6eqtr4di 2792 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
87oveqd 7219 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
94, 4, 8mpoeq123dv 7275 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
10 df-plusf 18085 . . . 4 +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
113fvexi 6720 . . . . 5 𝐵 ∈ V
126fvexi 6720 . . . . . . 7 + ∈ V
1312rnex 7679 . . . . . 6 ran + ∈ V
14 p0ex 5266 . . . . . 6 {∅} ∈ V
1513, 14unex 7520 . . . . 5 (ran + ∪ {∅}) ∈ V
16 df-ov 7205 . . . . . . 7 (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩)
17 fvrn0 6734 . . . . . . 7 ( + ‘⟨𝑥, 𝑦⟩) ∈ (ran + ∪ {∅})
1816, 17eqeltri 2830 . . . . . 6 (𝑥 + 𝑦) ∈ (ran + ∪ {∅})
1918rgen2w 3067 . . . . 5 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) ∈ (ran + ∪ {∅})
2011, 11, 15, 19mpoexw 7838 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V
219, 10, 20fvmpt 6807 . . 3 (𝐺 ∈ V → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
22 fvprc 6698 . . . 4 𝐺 ∈ V → (+𝑓𝐺) = ∅)
23 fvprc 6698 . . . . . . 7 𝐺 ∈ V → (Base‘𝐺) = ∅)
243, 23syl5eq 2786 . . . . . 6 𝐺 ∈ V → 𝐵 = ∅)
2524olcd 874 . . . . 5 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
26 0mpo0 7283 . . . . 5 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = ∅)
2725, 26syl 17 . . . 4 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = ∅)
2822, 27eqtr4d 2777 . . 3 𝐺 ∈ V → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
2921, 28pm2.61i 185 . 2 (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
301, 29eqtri 2762 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1543  wcel 2110  Vcvv 3401  cun 3855  c0 4227  {csn 4531  cop 4537  ran crn 5541  cfv 6369  (class class class)co 7202  cmpo 7204  Basecbs 16684  +gcplusg 16767  +𝑓cplusf 18083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-1st 7750  df-2nd 7751  df-plusf 18085
This theorem is referenced by:  plusfval  18093  plusfeq  18094  plusffn  18095  mgmplusf  18096  rlmscaf  20218  istgp2  22960  oppgtmd  22966  submtmd  22973  prdstmdd  22993  ressplusf  30927  pl1cn  31591
  Copyright terms: Public domain W3C validator