MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusffval Structured version   Visualization version   GIF version

Theorem plusffval 18556
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusffval = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem plusffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2 = (+𝑓𝐺)
2 fveq2 6828 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 plusffval.1 . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2786 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6828 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 plusffval.2 . . . . . . 7 + = (+g𝐺)
75, 6eqtr4di 2786 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
87oveqd 7369 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
94, 4, 8mpoeq123dv 7427 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
10 df-plusf 18549 . . . 4 +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
113fvexi 6842 . . . . 5 𝐵 ∈ V
126fvexi 6842 . . . . . . 7 + ∈ V
1312rnex 7846 . . . . . 6 ran + ∈ V
14 p0ex 5324 . . . . . 6 {∅} ∈ V
1513, 14unex 7683 . . . . 5 (ran + ∪ {∅}) ∈ V
16 df-ov 7355 . . . . . . 7 (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩)
17 fvrn0 6856 . . . . . . 7 ( + ‘⟨𝑥, 𝑦⟩) ∈ (ran + ∪ {∅})
1816, 17eqeltri 2829 . . . . . 6 (𝑥 + 𝑦) ∈ (ran + ∪ {∅})
1918rgen2w 3053 . . . . 5 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) ∈ (ran + ∪ {∅})
2011, 11, 15, 19mpoexw 8016 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V
219, 10, 20fvmpt 6935 . . 3 (𝐺 ∈ V → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
22 fvprc 6820 . . . 4 𝐺 ∈ V → (+𝑓𝐺) = ∅)
23 fvprc 6820 . . . . . . 7 𝐺 ∈ V → (Base‘𝐺) = ∅)
243, 23eqtrid 2780 . . . . . 6 𝐺 ∈ V → 𝐵 = ∅)
2524olcd 874 . . . . 5 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
26 0mpo0 7435 . . . . 5 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = ∅)
2725, 26syl 17 . . . 4 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = ∅)
2822, 27eqtr4d 2771 . . 3 𝐺 ∈ V → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
2921, 28pm2.61i 182 . 2 (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
301, 29eqtri 2756 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  c0 4282  {csn 4575  cop 4581  ran crn 5620  cfv 6486  (class class class)co 7352  cmpo 7354  Basecbs 17122  +gcplusg 17163  +𝑓cplusf 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-plusf 18549
This theorem is referenced by:  plusfval  18557  plusfeq  18558  plusffn  18559  mgmplusf  18560  rlmscaf  21143  istgp2  24007  oppgtmd  24013  submtmd  24020  prdstmdd  24040  ressplusf  32951  pl1cn  33989
  Copyright terms: Public domain W3C validator