| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plusffval | Structured version Visualization version GIF version | ||
| Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
| plusffval.2 | ⊢ + = (+g‘𝐺) |
| plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| plusffval | ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusffval.3 | . 2 ⊢ ⨣ = (+𝑓‘𝐺) | |
| 2 | fveq2 6828 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 3 | plusffval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 5 | fveq2 6828 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 6 | plusffval.2 | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 7 | 5, 6 | eqtr4di 2786 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 8 | 7 | oveqd 7369 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
| 9 | 4, 4, 8 | mpoeq123dv 7427 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 10 | df-plusf 18549 | . . . 4 ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) | |
| 11 | 3 | fvexi 6842 | . . . . 5 ⊢ 𝐵 ∈ V |
| 12 | 6 | fvexi 6842 | . . . . . . 7 ⊢ + ∈ V |
| 13 | 12 | rnex 7846 | . . . . . 6 ⊢ ran + ∈ V |
| 14 | p0ex 5324 | . . . . . 6 ⊢ {∅} ∈ V | |
| 15 | 13, 14 | unex 7683 | . . . . 5 ⊢ (ran + ∪ {∅}) ∈ V |
| 16 | df-ov 7355 | . . . . . . 7 ⊢ (𝑥 + 𝑦) = ( + ‘〈𝑥, 𝑦〉) | |
| 17 | fvrn0 6856 | . . . . . . 7 ⊢ ( + ‘〈𝑥, 𝑦〉) ∈ (ran + ∪ {∅}) | |
| 18 | 16, 17 | eqeltri 2829 | . . . . . 6 ⊢ (𝑥 + 𝑦) ∈ (ran + ∪ {∅}) |
| 19 | 18 | rgen2w 3053 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ (ran + ∪ {∅}) |
| 20 | 11, 11, 15, 19 | mpoexw 8016 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V |
| 21 | 9, 10, 20 | fvmpt 6935 | . . 3 ⊢ (𝐺 ∈ V → (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 22 | fvprc 6820 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (+𝑓‘𝐺) = ∅) | |
| 23 | fvprc 6820 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
| 24 | 3, 23 | eqtrid 2780 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
| 25 | 24 | olcd 874 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
| 26 | 0mpo0 7435 | . . . . 5 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) = ∅) | |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) = ∅) |
| 28 | 22, 27 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝐺 ∈ V → (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 29 | 21, 28 | pm2.61i 182 | . 2 ⊢ (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
| 30 | 1, 29 | eqtri 2756 | 1 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ∅c0 4282 {csn 4575 〈cop 4581 ran crn 5620 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 Basecbs 17122 +gcplusg 17163 +𝑓cplusf 18547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-plusf 18549 |
| This theorem is referenced by: plusfval 18557 plusfeq 18558 plusffn 18559 mgmplusf 18560 rlmscaf 21143 istgp2 24007 oppgtmd 24013 submtmd 24020 prdstmdd 24040 ressplusf 32951 pl1cn 33989 |
| Copyright terms: Public domain | W3C validator |