MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusffval Structured version   Visualization version   GIF version

Theorem plusffval 17727
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusffval = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem plusffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2 = (+𝑓𝐺)
2 fveq2 6496 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 plusffval.1 . . . . . 6 𝐵 = (Base‘𝐺)
42, 3syl6eqr 2826 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6496 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 plusffval.2 . . . . . . 7 + = (+g𝐺)
75, 6syl6eqr 2826 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
87oveqd 6991 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
94, 4, 8mpoeq123dv 7045 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
10 df-plusf 17721 . . . 4 +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
11 df-ov 6977 . . . . . . . 8 (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩)
12 fvrn0 6524 . . . . . . . 8 ( + ‘⟨𝑥, 𝑦⟩) ∈ (ran + ∪ {∅})
1311, 12eqeltri 2856 . . . . . . 7 (𝑥 + 𝑦) ∈ (ran + ∪ {∅})
1413rgen2w 3095 . . . . . 6 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) ∈ (ran + ∪ {∅})
15 eqid 2772 . . . . . . 7 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
1615fmpo 7572 . . . . . 6 (∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) ∈ (ran + ∪ {∅}) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)):(𝐵 × 𝐵)⟶(ran + ∪ {∅}))
1714, 16mpbi 222 . . . . 5 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)):(𝐵 × 𝐵)⟶(ran + ∪ {∅})
183fvexi 6510 . . . . . 6 𝐵 ∈ V
1918, 18xpex 7291 . . . . 5 (𝐵 × 𝐵) ∈ V
206fvexi 6510 . . . . . . 7 + ∈ V
2120rnex 7430 . . . . . 6 ran + ∈ V
22 p0ex 5133 . . . . . 6 {∅} ∈ V
2321, 22unex 7284 . . . . 5 (ran + ∪ {∅}) ∈ V
24 fex2 7451 . . . . 5 (((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)):(𝐵 × 𝐵)⟶(ran + ∪ {∅}) ∧ (𝐵 × 𝐵) ∈ V ∧ (ran + ∪ {∅}) ∈ V) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V)
2517, 19, 23, 24mp3an 1440 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V
269, 10, 25fvmpt 6593 . . 3 (𝐺 ∈ V → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
27 fvprc 6489 . . . . 5 𝐺 ∈ V → (+𝑓𝐺) = ∅)
28 mpo0 7053 . . . . 5 (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + 𝑦)) = ∅
2927, 28syl6eqr 2826 . . . 4 𝐺 ∈ V → (+𝑓𝐺) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + 𝑦)))
30 fvprc 6489 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
313, 30syl5eq 2820 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
32 mpoeq12 7043 . . . . 5 ((𝐵 = ∅ ∧ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + 𝑦)))
3331, 31, 32syl2anc 576 . . . 4 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + 𝑦)))
3429, 33eqtr4d 2811 . . 3 𝐺 ∈ V → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
3526, 34pm2.61i 177 . 2 (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
361, 35eqtri 2796 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1507  wcel 2050  wral 3082  Vcvv 3409  cun 3821  c0 4172  {csn 4435  cop 4441   × cxp 5401  ran crn 5404  wf 6181  cfv 6185  (class class class)co 6974  cmpo 6976  Basecbs 16337  +gcplusg 16419  +𝑓cplusf 17719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-plusf 17721
This theorem is referenced by:  plusfval  17728  plusfeq  17729  plusffn  17730  mgmplusf  17731  rlmscaf  19714  istgp2  22415  oppgtmd  22421  submtmd  22428  prdstmdd  22447  ressplusf  30392  pl1cn  30871
  Copyright terms: Public domain W3C validator