Detailed syntax breakdown of Definition df-ply
| Step | Hyp | Ref
| Expression |
| 1 | | cply 26223 |
. 2
class
Poly |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cc 11153 |
. . . 4
class
ℂ |
| 4 | 3 | cpw 4600 |
. . 3
class 𝒫
ℂ |
| 5 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 6 | 5 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 7 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 8 | | cc0 11155 |
. . . . . . . . . 10
class
0 |
| 9 | | vn |
. . . . . . . . . . 11
setvar 𝑛 |
| 10 | 9 | cv 1539 |
. . . . . . . . . 10
class 𝑛 |
| 11 | | cfz 13547 |
. . . . . . . . . 10
class
... |
| 12 | 8, 10, 11 | co 7431 |
. . . . . . . . 9
class
(0...𝑛) |
| 13 | | vk |
. . . . . . . . . . . 12
setvar 𝑘 |
| 14 | 13 | cv 1539 |
. . . . . . . . . . 11
class 𝑘 |
| 15 | | va |
. . . . . . . . . . . 12
setvar 𝑎 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . 11
class 𝑎 |
| 17 | 14, 16 | cfv 6561 |
. . . . . . . . . 10
class (𝑎‘𝑘) |
| 18 | 7 | cv 1539 |
. . . . . . . . . . 11
class 𝑧 |
| 19 | | cexp 14102 |
. . . . . . . . . . 11
class
↑ |
| 20 | 18, 14, 19 | co 7431 |
. . . . . . . . . 10
class (𝑧↑𝑘) |
| 21 | | cmul 11160 |
. . . . . . . . . 10
class
· |
| 22 | 17, 20, 21 | co 7431 |
. . . . . . . . 9
class ((𝑎‘𝑘) · (𝑧↑𝑘)) |
| 23 | 12, 22, 13 | csu 15722 |
. . . . . . . 8
class
Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) |
| 24 | 7, 3, 23 | cmpt 5225 |
. . . . . . 7
class (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 25 | 6, 24 | wceq 1540 |
. . . . . 6
wff 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 26 | 2 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 27 | 8 | csn 4626 |
. . . . . . . 8
class
{0} |
| 28 | 26, 27 | cun 3949 |
. . . . . . 7
class (𝑥 ∪ {0}) |
| 29 | | cn0 12526 |
. . . . . . 7
class
ℕ0 |
| 30 | | cmap 8866 |
. . . . . . 7
class
↑m |
| 31 | 28, 29, 30 | co 7431 |
. . . . . 6
class ((𝑥 ∪ {0}) ↑m
ℕ0) |
| 32 | 25, 15, 31 | wrex 3070 |
. . . . 5
wff
∃𝑎 ∈
((𝑥 ∪ {0})
↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 33 | 32, 9, 29 | wrex 3070 |
. . . 4
wff
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 34 | 33, 5 | cab 2714 |
. . 3
class {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} |
| 35 | 2, 4, 34 | cmpt 5225 |
. 2
class (𝑥 ∈ 𝒫 ℂ
↦ {𝑓 ∣
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| 36 | 1, 35 | wceq 1540 |
1
wff Poly =
(𝑥 ∈ 𝒫 ℂ
↦ {𝑓 ∣
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |