Detailed syntax breakdown of Definition df-ply
Step | Hyp | Ref
| Expression |
1 | | cply 25250 |
. 2
class
Poly |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cc 10800 |
. . . 4
class
ℂ |
4 | 3 | cpw 4530 |
. . 3
class 𝒫
ℂ |
5 | | vf |
. . . . . . . 8
setvar 𝑓 |
6 | 5 | cv 1538 |
. . . . . . 7
class 𝑓 |
7 | | vz |
. . . . . . . 8
setvar 𝑧 |
8 | | cc0 10802 |
. . . . . . . . . 10
class
0 |
9 | | vn |
. . . . . . . . . . 11
setvar 𝑛 |
10 | 9 | cv 1538 |
. . . . . . . . . 10
class 𝑛 |
11 | | cfz 13168 |
. . . . . . . . . 10
class
... |
12 | 8, 10, 11 | co 7255 |
. . . . . . . . 9
class
(0...𝑛) |
13 | | vk |
. . . . . . . . . . . 12
setvar 𝑘 |
14 | 13 | cv 1538 |
. . . . . . . . . . 11
class 𝑘 |
15 | | va |
. . . . . . . . . . . 12
setvar 𝑎 |
16 | 15 | cv 1538 |
. . . . . . . . . . 11
class 𝑎 |
17 | 14, 16 | cfv 6418 |
. . . . . . . . . 10
class (𝑎‘𝑘) |
18 | 7 | cv 1538 |
. . . . . . . . . . 11
class 𝑧 |
19 | | cexp 13710 |
. . . . . . . . . . 11
class
↑ |
20 | 18, 14, 19 | co 7255 |
. . . . . . . . . 10
class (𝑧↑𝑘) |
21 | | cmul 10807 |
. . . . . . . . . 10
class
· |
22 | 17, 20, 21 | co 7255 |
. . . . . . . . 9
class ((𝑎‘𝑘) · (𝑧↑𝑘)) |
23 | 12, 22, 13 | csu 15325 |
. . . . . . . 8
class
Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) |
24 | 7, 3, 23 | cmpt 5153 |
. . . . . . 7
class (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
25 | 6, 24 | wceq 1539 |
. . . . . 6
wff 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
26 | 2 | cv 1538 |
. . . . . . . 8
class 𝑥 |
27 | 8 | csn 4558 |
. . . . . . . 8
class
{0} |
28 | 26, 27 | cun 3881 |
. . . . . . 7
class (𝑥 ∪ {0}) |
29 | | cn0 12163 |
. . . . . . 7
class
ℕ0 |
30 | | cmap 8573 |
. . . . . . 7
class
↑m |
31 | 28, 29, 30 | co 7255 |
. . . . . 6
class ((𝑥 ∪ {0}) ↑m
ℕ0) |
32 | 25, 15, 31 | wrex 3064 |
. . . . 5
wff
∃𝑎 ∈
((𝑥 ∪ {0})
↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
33 | 32, 9, 29 | wrex 3064 |
. . . 4
wff
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
34 | 33, 5 | cab 2715 |
. . 3
class {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} |
35 | 2, 4, 34 | cmpt 5153 |
. 2
class (𝑥 ∈ 𝒫 ℂ
↦ {𝑓 ∣
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
36 | 1, 35 | wceq 1539 |
1
wff Poly =
(𝑥 ∈ 𝒫 ℂ
↦ {𝑓 ∣
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |