Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plybss | Structured version Visualization version GIF version |
Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
plybss | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ply 25377 | . . 3 ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
2 | 1 | mptrcl 6904 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ) |
3 | 2 | elpwid 4547 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 {cab 2710 ∃wrex 3068 ∪ cun 3887 ⊆ wss 3889 𝒫 cpw 4536 {csn 4564 ↦ cmpt 5160 ‘cfv 6447 (class class class)co 7295 ↑m cmap 8635 ℂcc 10897 0cc0 10899 · cmul 10904 ℕ0cn0 12261 ...cfz 13267 ↑cexp 13810 Σcsu 15425 Polycply 25373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-xp 5597 df-rel 5598 df-cnv 5599 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fv 6455 df-ply 25377 |
This theorem is referenced by: elply 25384 plyf 25387 plyssc 25389 plyaddlem 25404 plymullem 25405 plysub 25408 dgrlem 25418 coeidlem 25426 plyco 25430 plycj 25466 plyreres 25471 plydivlem3 25483 plydivlem4 25484 elmnc 40985 |
Copyright terms: Public domain | W3C validator |