![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plybss | Structured version Visualization version GIF version |
Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
plybss | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ply 24285 | . . . 4 ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
2 | 1 | dmmptss 5850 | . . 3 ⊢ dom Poly ⊆ 𝒫 ℂ |
3 | elfvdm 6443 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ dom Poly) | |
4 | 2, 3 | sseldi 3796 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ) |
5 | 4 | elpwid 4361 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 {cab 2785 ∃wrex 3090 ∪ cun 3767 ⊆ wss 3769 𝒫 cpw 4349 {csn 4368 ↦ cmpt 4922 dom cdm 5312 ‘cfv 6101 (class class class)co 6878 ↑𝑚 cmap 8095 ℂcc 10222 0cc0 10224 · cmul 10229 ℕ0cn0 11580 ...cfz 12580 ↑cexp 13114 Σcsu 14757 Polycply 24281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-xp 5318 df-rel 5319 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fv 6109 df-ply 24285 |
This theorem is referenced by: elply 24292 plyf 24295 plyssc 24297 plyaddlem 24312 plymullem 24313 plysub 24316 dgrlem 24326 coeidlem 24334 plyco 24338 plycj 24374 plyreres 24379 plydivlem3 24391 plydivlem4 24392 elmnc 38491 |
Copyright terms: Public domain | W3C validator |