MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plybss Structured version   Visualization version   GIF version

Theorem plybss 25383
Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plybss (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)

Proof of Theorem plybss
Dummy variables 𝑘 𝑎 𝑛 𝑧 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ply 25377 . . 3 Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
21mptrcl 6904 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ)
32elpwid 4547 1 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101  {cab 2710  wrex 3068  cun 3887  wss 3889  𝒫 cpw 4536  {csn 4564  cmpt 5160  cfv 6447  (class class class)co 7295  m cmap 8635  cc 10897  0cc0 10899   · cmul 10904  0cn0 12261  ...cfz 13267  cexp 13810  Σcsu 15425  Polycply 25373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-xp 5597  df-rel 5598  df-cnv 5599  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fv 6455  df-ply 25377
This theorem is referenced by:  elply  25384  plyf  25387  plyssc  25389  plyaddlem  25404  plymullem  25405  plysub  25408  dgrlem  25418  coeidlem  25426  plyco  25430  plycj  25466  plyreres  25471  plydivlem3  25483  plydivlem4  25484  elmnc  40985
  Copyright terms: Public domain W3C validator