| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plybss | Structured version Visualization version GIF version | ||
| Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| plybss | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ply 26120 | . . 3 ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
| 2 | 1 | mptrcl 6938 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ) |
| 3 | 2 | elpwid 4556 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ∪ cun 3895 ⊆ wss 3897 𝒫 cpw 4547 {csn 4573 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℂcc 11004 0cc0 11006 · cmul 11011 ℕ0cn0 12381 ...cfz 13407 ↑cexp 13968 Σcsu 15593 Polycply 26116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 df-ply 26120 |
| This theorem is referenced by: elply 26127 plyf 26130 plyssc 26132 plyaddlem 26147 plymullem 26148 plysub 26151 dgrlem 26161 coeidlem 26169 plyco 26173 plycj 26210 plycjOLD 26212 plyreres 26217 plydivlem3 26230 plydivlem4 26231 elmnc 43228 |
| Copyright terms: Public domain | W3C validator |