![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plybss | Structured version Visualization version GIF version |
Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
plybss | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ply 25631 | . . 3 ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
2 | 1 | mptrcl 6993 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ) |
3 | 2 | elpwid 4605 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {cab 2708 ∃wrex 3069 ∪ cun 3942 ⊆ wss 3944 𝒫 cpw 4596 {csn 4622 ↦ cmpt 5224 ‘cfv 6532 (class class class)co 7393 ↑m cmap 8803 ℂcc 11090 0cc0 11092 · cmul 11097 ℕ0cn0 12454 ...cfz 13466 ↑cexp 14009 Σcsu 15614 Polycply 25627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fv 6540 df-ply 25631 |
This theorem is referenced by: elply 25638 plyf 25641 plyssc 25643 plyaddlem 25658 plymullem 25659 plysub 25662 dgrlem 25672 coeidlem 25680 plyco 25684 plycj 25720 plyreres 25725 plydivlem3 25737 plydivlem4 25738 elmnc 41649 |
Copyright terms: Public domain | W3C validator |