| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plybss | Structured version Visualization version GIF version | ||
| Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| plybss | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ply 26150 | . . 3 ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
| 2 | 1 | mptrcl 7000 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ) |
| 3 | 2 | elpwid 4589 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 ∪ cun 3929 ⊆ wss 3931 𝒫 cpw 4580 {csn 4606 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 ℂcc 11132 0cc0 11134 · cmul 11139 ℕ0cn0 12506 ...cfz 13529 ↑cexp 14084 Σcsu 15707 Polycply 26146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fv 6544 df-ply 26150 |
| This theorem is referenced by: elply 26157 plyf 26160 plyssc 26162 plyaddlem 26177 plymullem 26178 plysub 26181 dgrlem 26191 coeidlem 26199 plyco 26203 plycj 26240 plycjOLD 26242 plyreres 26247 plydivlem3 26260 plydivlem4 26261 elmnc 43127 |
| Copyright terms: Public domain | W3C validator |