| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plybss | Structured version Visualization version GIF version | ||
| Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| plybss | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ply 26093 | . . 3 ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
| 2 | 1 | mptrcl 6977 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ) |
| 3 | 2 | elpwid 4572 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ∪ cun 3912 ⊆ wss 3914 𝒫 cpw 4563 {csn 4589 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℂcc 11066 0cc0 11068 · cmul 11073 ℕ0cn0 12442 ...cfz 13468 ↑cexp 14026 Σcsu 15652 Polycply 26089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fv 6519 df-ply 26093 |
| This theorem is referenced by: elply 26100 plyf 26103 plyssc 26105 plyaddlem 26120 plymullem 26121 plysub 26124 dgrlem 26134 coeidlem 26142 plyco 26146 plycj 26183 plycjOLD 26185 plyreres 26190 plydivlem3 26203 plydivlem4 26204 elmnc 43125 |
| Copyright terms: Public domain | W3C validator |