MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plybss Structured version   Visualization version   GIF version

Theorem plybss 25088
Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plybss (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)

Proof of Theorem plybss
Dummy variables 𝑘 𝑎 𝑛 𝑧 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ply 25082 . . 3 Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
21mptrcl 6827 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ)
32elpwid 4524 1 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  {cab 2714  wrex 3062  cun 3864  wss 3866  𝒫 cpw 4513  {csn 4541  cmpt 5135  cfv 6380  (class class class)co 7213  m cmap 8508  cc 10727  0cc0 10729   · cmul 10734  0cn0 12090  ...cfz 13095  cexp 13635  Σcsu 15249  Polycply 25078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fv 6388  df-ply 25082
This theorem is referenced by:  elply  25089  plyf  25092  plyssc  25094  plyaddlem  25109  plymullem  25110  plysub  25113  dgrlem  25123  coeidlem  25131  plyco  25135  plycj  25171  plyreres  25176  plydivlem3  25188  plydivlem4  25189  elmnc  40664
  Copyright terms: Public domain W3C validator