| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plyval | Structured version Visualization version GIF version | ||
| Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyval | ⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11087 | . . 3 ⊢ ℂ ∈ V | |
| 2 | 1 | elpw2 5270 | . 2 ⊢ (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ) |
| 3 | uneq1 4108 | . . . . . . 7 ⊢ (𝑥 = 𝑆 → (𝑥 ∪ {0}) = (𝑆 ∪ {0})) | |
| 4 | 3 | oveq1d 7361 | . . . . . 6 ⊢ (𝑥 = 𝑆 → ((𝑥 ∪ {0}) ↑m ℕ0) = ((𝑆 ∪ {0}) ↑m ℕ0)) |
| 5 | 4 | rexeqdv 3293 | . . . . 5 ⊢ (𝑥 = 𝑆 → (∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 6 | 5 | rexbidv 3156 | . . . 4 ⊢ (𝑥 = 𝑆 → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 7 | 6 | abbidv 2797 | . . 3 ⊢ (𝑥 = 𝑆 → {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| 8 | df-ply 26120 | . . 3 ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
| 9 | nn0ex 12387 | . . . 4 ⊢ ℕ0 ∈ V | |
| 10 | ovex 7379 | . . . 4 ⊢ ((𝑆 ∪ {0}) ↑m ℕ0) ∈ V | |
| 11 | 9, 10 | ab2rexex 7911 | . . 3 ⊢ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} ∈ V |
| 12 | 7, 8, 11 | fvmpt 6929 | . 2 ⊢ (𝑆 ∈ 𝒫 ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| 13 | 2, 12 | sylbir 235 | 1 ⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ∪ cun 3895 ⊆ wss 3897 𝒫 cpw 4547 {csn 4573 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℂcc 11004 0cc0 11006 · cmul 11011 ℕ0cn0 12381 ...cfz 13407 ↑cexp 13968 Σcsu 15593 Polycply 26116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-n0 12382 df-ply 26120 |
| This theorem is referenced by: elply 26127 plyss 26131 |
| Copyright terms: Public domain | W3C validator |