Detailed syntax breakdown of Definition df-pmap
Step | Hyp | Ref
| Expression |
1 | | cpmap 37518 |
. 2
class
pmap |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | va |
. . . 4
setvar 𝑎 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | cbs 16921 |
. . . . 5
class
Base |
7 | 5, 6 | cfv 6437 |
. . . 4
class
(Base‘𝑘) |
8 | | vp |
. . . . . . 7
setvar 𝑝 |
9 | 8 | cv 1538 |
. . . . . 6
class 𝑝 |
10 | 4 | cv 1538 |
. . . . . 6
class 𝑎 |
11 | | cple 16978 |
. . . . . . 7
class
le |
12 | 5, 11 | cfv 6437 |
. . . . . 6
class
(le‘𝑘) |
13 | 9, 10, 12 | wbr 5075 |
. . . . 5
wff 𝑝(le‘𝑘)𝑎 |
14 | | catm 37284 |
. . . . . 6
class
Atoms |
15 | 5, 14 | cfv 6437 |
. . . . 5
class
(Atoms‘𝑘) |
16 | 13, 8, 15 | crab 3069 |
. . . 4
class {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎} |
17 | 4, 7, 16 | cmpt 5158 |
. . 3
class (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎}) |
18 | 2, 3, 17 | cmpt 5158 |
. 2
class (𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎})) |
19 | 1, 18 | wceq 1539 |
1
wff pmap =
(𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎})) |