Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-pmap Structured version   Visualization version   GIF version

Definition df-pmap 38842
Description: Define projective map for π‘˜ at π‘Ž. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.)
Assertion
Ref Expression
df-pmap pmap = (π‘˜ ∈ V ↦ (π‘Ž ∈ (Baseβ€˜π‘˜) ↦ {𝑝 ∈ (Atomsβ€˜π‘˜) ∣ 𝑝(leβ€˜π‘˜)π‘Ž}))
Distinct variable group:   π‘˜,π‘Ž,𝑝

Detailed syntax breakdown of Definition df-pmap
StepHypRef Expression
1 cpmap 38835 . 2 class pmap
2 vk . . 3 setvar π‘˜
3 cvv 3473 . . 3 class V
4 va . . . 4 setvar π‘Ž
52cv 1539 . . . . 5 class π‘˜
6 cbs 17151 . . . . 5 class Base
75, 6cfv 6543 . . . 4 class (Baseβ€˜π‘˜)
8 vp . . . . . . 7 setvar 𝑝
98cv 1539 . . . . . 6 class 𝑝
104cv 1539 . . . . . 6 class π‘Ž
11 cple 17211 . . . . . . 7 class le
125, 11cfv 6543 . . . . . 6 class (leβ€˜π‘˜)
139, 10, 12wbr 5148 . . . . 5 wff 𝑝(leβ€˜π‘˜)π‘Ž
14 catm 38600 . . . . . 6 class Atoms
155, 14cfv 6543 . . . . 5 class (Atomsβ€˜π‘˜)
1613, 8, 15crab 3431 . . . 4 class {𝑝 ∈ (Atomsβ€˜π‘˜) ∣ 𝑝(leβ€˜π‘˜)π‘Ž}
174, 7, 16cmpt 5231 . . 3 class (π‘Ž ∈ (Baseβ€˜π‘˜) ↦ {𝑝 ∈ (Atomsβ€˜π‘˜) ∣ 𝑝(leβ€˜π‘˜)π‘Ž})
182, 3, 17cmpt 5231 . 2 class (π‘˜ ∈ V ↦ (π‘Ž ∈ (Baseβ€˜π‘˜) ↦ {𝑝 ∈ (Atomsβ€˜π‘˜) ∣ 𝑝(leβ€˜π‘˜)π‘Ž}))
191, 18wceq 1540 1 wff pmap = (π‘˜ ∈ V ↦ (π‘Ž ∈ (Baseβ€˜π‘˜) ↦ {𝑝 ∈ (Atomsβ€˜π‘˜) ∣ 𝑝(leβ€˜π‘˜)π‘Ž}))
Colors of variables: wff setvar class
This definition is referenced by:  pmapfval  39094
  Copyright terms: Public domain W3C validator