Detailed syntax breakdown of Definition df-pmap
| Step | Hyp | Ref
| Expression |
| 1 | | cpmap 39499 |
. 2
class
pmap |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | va |
. . . 4
setvar 𝑎 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑘 |
| 6 | | cbs 17247 |
. . . . 5
class
Base |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(Base‘𝑘) |
| 8 | | vp |
. . . . . . 7
setvar 𝑝 |
| 9 | 8 | cv 1539 |
. . . . . 6
class 𝑝 |
| 10 | 4 | cv 1539 |
. . . . . 6
class 𝑎 |
| 11 | | cple 17304 |
. . . . . . 7
class
le |
| 12 | 5, 11 | cfv 6561 |
. . . . . 6
class
(le‘𝑘) |
| 13 | 9, 10, 12 | wbr 5143 |
. . . . 5
wff 𝑝(le‘𝑘)𝑎 |
| 14 | | catm 39264 |
. . . . . 6
class
Atoms |
| 15 | 5, 14 | cfv 6561 |
. . . . 5
class
(Atoms‘𝑘) |
| 16 | 13, 8, 15 | crab 3436 |
. . . 4
class {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎} |
| 17 | 4, 7, 16 | cmpt 5225 |
. . 3
class (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎}) |
| 18 | 2, 3, 17 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎})) |
| 19 | 1, 18 | wceq 1540 |
1
wff pmap =
(𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎})) |