Step | Hyp | Ref
| Expression |
1 | | cpmap 38835 |
. 2
class
pmap |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3473 |
. . 3
class
V |
4 | | va |
. . . 4
setvar π |
5 | 2 | cv 1539 |
. . . . 5
class π |
6 | | cbs 17151 |
. . . . 5
class
Base |
7 | 5, 6 | cfv 6543 |
. . . 4
class
(Baseβπ) |
8 | | vp |
. . . . . . 7
setvar π |
9 | 8 | cv 1539 |
. . . . . 6
class π |
10 | 4 | cv 1539 |
. . . . . 6
class π |
11 | | cple 17211 |
. . . . . . 7
class
le |
12 | 5, 11 | cfv 6543 |
. . . . . 6
class
(leβπ) |
13 | 9, 10, 12 | wbr 5148 |
. . . . 5
wff π(leβπ)π |
14 | | catm 38600 |
. . . . . 6
class
Atoms |
15 | 5, 14 | cfv 6543 |
. . . . 5
class
(Atomsβπ) |
16 | 13, 8, 15 | crab 3431 |
. . . 4
class {π β (Atomsβπ) β£ π(leβπ)π} |
17 | 4, 7, 16 | cmpt 5231 |
. . 3
class (π β (Baseβπ) β¦ {π β (Atomsβπ) β£ π(leβπ)π}) |
18 | 2, 3, 17 | cmpt 5231 |
. 2
class (π β V β¦ (π β (Baseβπ) β¦ {π β (Atomsβπ) β£ π(leβπ)π})) |
19 | 1, 18 | wceq 1540 |
1
wff pmap =
(π β V β¦ (π β (Baseβπ) β¦ {π β (Atomsβπ) β£ π(leβπ)π})) |