Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapfval Structured version   Visualization version   GIF version

Theorem pmapfval 39713
Description: The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b 𝐵 = (Base‘𝐾)
pmapfval.l = (le‘𝐾)
pmapfval.a 𝐴 = (Atoms‘𝐾)
pmapfval.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapfval (𝐾𝐶𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
Distinct variable groups:   𝐴,𝑎   𝑥,𝐵   𝑥,𝑎,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑎)   𝐶(𝑥,𝑎)   (𝑥,𝑎)   𝑀(𝑥,𝑎)

Proof of Theorem pmapfval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐾𝐶𝐾 ∈ V)
2 pmapfval.m . . 3 𝑀 = (pmap‘𝐾)
3 fveq2 6920 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 pmapfval.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2798 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6920 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
7 pmapfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
86, 7eqtr4di 2798 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
9 fveq2 6920 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
10 pmapfval.l . . . . . . . 8 = (le‘𝐾)
119, 10eqtr4di 2798 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1211breqd 5177 . . . . . 6 (𝑘 = 𝐾 → (𝑎(le‘𝑘)𝑥𝑎 𝑥))
138, 12rabeqbidv 3462 . . . . 5 (𝑘 = 𝐾 → {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥} = {𝑎𝐴𝑎 𝑥})
145, 13mpteq12dv 5257 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ (Base‘𝑘) ↦ {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥}) = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
15 df-pmap 39461 . . . 4 pmap = (𝑘 ∈ V ↦ (𝑥 ∈ (Base‘𝑘) ↦ {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥}))
1614, 15, 4mptfvmpt 7265 . . 3 (𝐾 ∈ V → (pmap‘𝐾) = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
172, 16eqtrid 2792 . 2 (𝐾 ∈ V → 𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
181, 17syl 17 1 (𝐾𝐶𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488   class class class wbr 5166  cmpt 5249  cfv 6573  Basecbs 17258  lecple 17318  Atomscatm 39219  pmapcpmap 39454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-pmap 39461
This theorem is referenced by:  pmapval  39714
  Copyright terms: Public domain W3C validator