![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapfval | Structured version Visualization version GIF version |
Description: The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) |
Ref | Expression |
---|---|
pmapfval.b | β’ π΅ = (BaseβπΎ) |
pmapfval.l | β’ β€ = (leβπΎ) |
pmapfval.a | β’ π΄ = (AtomsβπΎ) |
pmapfval.m | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
pmapfval | β’ (πΎ β πΆ β π = (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3485 | . 2 β’ (πΎ β πΆ β πΎ β V) | |
2 | pmapfval.m | . . 3 β’ π = (pmapβπΎ) | |
3 | fveq2 6881 | . . . . . 6 β’ (π = πΎ β (Baseβπ) = (BaseβπΎ)) | |
4 | pmapfval.b | . . . . . 6 β’ π΅ = (BaseβπΎ) | |
5 | 3, 4 | eqtr4di 2782 | . . . . 5 β’ (π = πΎ β (Baseβπ) = π΅) |
6 | fveq2 6881 | . . . . . . 7 β’ (π = πΎ β (Atomsβπ) = (AtomsβπΎ)) | |
7 | pmapfval.a | . . . . . . 7 β’ π΄ = (AtomsβπΎ) | |
8 | 6, 7 | eqtr4di 2782 | . . . . . 6 β’ (π = πΎ β (Atomsβπ) = π΄) |
9 | fveq2 6881 | . . . . . . . 8 β’ (π = πΎ β (leβπ) = (leβπΎ)) | |
10 | pmapfval.l | . . . . . . . 8 β’ β€ = (leβπΎ) | |
11 | 9, 10 | eqtr4di 2782 | . . . . . . 7 β’ (π = πΎ β (leβπ) = β€ ) |
12 | 11 | breqd 5149 | . . . . . 6 β’ (π = πΎ β (π(leβπ)π₯ β π β€ π₯)) |
13 | 8, 12 | rabeqbidv 3441 | . . . . 5 β’ (π = πΎ β {π β (Atomsβπ) β£ π(leβπ)π₯} = {π β π΄ β£ π β€ π₯}) |
14 | 5, 13 | mpteq12dv 5229 | . . . 4 β’ (π = πΎ β (π₯ β (Baseβπ) β¦ {π β (Atomsβπ) β£ π(leβπ)π₯}) = (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})) |
15 | df-pmap 38831 | . . . 4 β’ pmap = (π β V β¦ (π₯ β (Baseβπ) β¦ {π β (Atomsβπ) β£ π(leβπ)π₯})) | |
16 | 14, 15, 4 | mptfvmpt 7221 | . . 3 β’ (πΎ β V β (pmapβπΎ) = (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})) |
17 | 2, 16 | eqtrid 2776 | . 2 β’ (πΎ β V β π = (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})) |
18 | 1, 17 | syl 17 | 1 β’ (πΎ β πΆ β π = (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3424 Vcvv 3466 class class class wbr 5138 β¦ cmpt 5221 βcfv 6533 Basecbs 17140 lecple 17200 Atomscatm 38589 pmapcpmap 38824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-pmap 38831 |
This theorem is referenced by: pmapval 39084 |
Copyright terms: Public domain | W3C validator |