Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapfval Structured version   Visualization version   GIF version

Theorem pmapfval 39083
Description: The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b 𝐡 = (Baseβ€˜πΎ)
pmapfval.l ≀ = (leβ€˜πΎ)
pmapfval.a 𝐴 = (Atomsβ€˜πΎ)
pmapfval.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
pmapfval (𝐾 ∈ 𝐢 β†’ 𝑀 = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
Distinct variable groups:   𝐴,π‘Ž   π‘₯,𝐡   π‘₯,π‘Ž,𝐾
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘Ž)   𝐢(π‘₯,π‘Ž)   ≀ (π‘₯,π‘Ž)   𝑀(π‘₯,π‘Ž)

Proof of Theorem pmapfval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝐾 ∈ 𝐢 β†’ 𝐾 ∈ V)
2 pmapfval.m . . 3 𝑀 = (pmapβ€˜πΎ)
3 fveq2 6881 . . . . . 6 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
4 pmapfval.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
53, 4eqtr4di 2782 . . . . 5 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
6 fveq2 6881 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = (Atomsβ€˜πΎ))
7 pmapfval.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
86, 7eqtr4di 2782 . . . . . 6 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = 𝐴)
9 fveq2 6881 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = (leβ€˜πΎ))
10 pmapfval.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
119, 10eqtr4di 2782 . . . . . . 7 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = ≀ )
1211breqd 5149 . . . . . 6 (π‘˜ = 𝐾 β†’ (π‘Ž(leβ€˜π‘˜)π‘₯ ↔ π‘Ž ≀ π‘₯))
138, 12rabeqbidv 3441 . . . . 5 (π‘˜ = 𝐾 β†’ {π‘Ž ∈ (Atomsβ€˜π‘˜) ∣ π‘Ž(leβ€˜π‘˜)π‘₯} = {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯})
145, 13mpteq12dv 5229 . . . 4 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ (Baseβ€˜π‘˜) ↦ {π‘Ž ∈ (Atomsβ€˜π‘˜) ∣ π‘Ž(leβ€˜π‘˜)π‘₯}) = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
15 df-pmap 38831 . . . 4 pmap = (π‘˜ ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘˜) ↦ {π‘Ž ∈ (Atomsβ€˜π‘˜) ∣ π‘Ž(leβ€˜π‘˜)π‘₯}))
1614, 15, 4mptfvmpt 7221 . . 3 (𝐾 ∈ V β†’ (pmapβ€˜πΎ) = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
172, 16eqtrid 2776 . 2 (𝐾 ∈ V β†’ 𝑀 = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
181, 17syl 17 1 (𝐾 ∈ 𝐢 β†’ 𝑀 = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {crab 3424  Vcvv 3466   class class class wbr 5138   ↦ cmpt 5221  β€˜cfv 6533  Basecbs 17140  lecple 17200  Atomscatm 38589  pmapcpmap 38824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-pmap 38831
This theorem is referenced by:  pmapval  39084
  Copyright terms: Public domain W3C validator