| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapfval | Structured version Visualization version GIF version | ||
| Description: The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) |
| Ref | Expression |
|---|---|
| pmapfval.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmapfval.l | ⊢ ≤ = (le‘𝐾) |
| pmapfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmapfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmapfval | ⊢ (𝐾 ∈ 𝐶 → 𝑀 = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐾 ∈ 𝐶 → 𝐾 ∈ V) | |
| 2 | pmapfval.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
| 3 | fveq2 6861 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
| 4 | pmapfval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
| 6 | fveq2 6861 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
| 7 | pmapfval.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | 6, 7 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
| 9 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) | |
| 10 | pmapfval.l | . . . . . . . 8 ⊢ ≤ = (le‘𝐾) | |
| 11 | 9, 10 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
| 12 | 11 | breqd 5121 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑎(le‘𝑘)𝑥 ↔ 𝑎 ≤ 𝑥)) |
| 13 | 8, 12 | rabeqbidv 3427 | . . . . 5 ⊢ (𝑘 = 𝐾 → {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥} = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥}) |
| 14 | 5, 13 | mpteq12dv 5197 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑥 ∈ (Base‘𝑘) ↦ {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥}) = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})) |
| 15 | df-pmap 39505 | . . . 4 ⊢ pmap = (𝑘 ∈ V ↦ (𝑥 ∈ (Base‘𝑘) ↦ {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥})) | |
| 16 | 14, 15, 4 | mptfvmpt 7205 | . . 3 ⊢ (𝐾 ∈ V → (pmap‘𝐾) = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})) |
| 17 | 2, 16 | eqtrid 2777 | . 2 ⊢ (𝐾 ∈ V → 𝑀 = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})) |
| 18 | 1, 17 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐶 → 𝑀 = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 Basecbs 17186 lecple 17234 Atomscatm 39263 pmapcpmap 39498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-pmap 39505 |
| This theorem is referenced by: pmapval 39758 |
| Copyright terms: Public domain | W3C validator |