Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapfval Structured version   Visualization version   GIF version

Theorem pmapfval 38615
Description: The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b 𝐡 = (Baseβ€˜πΎ)
pmapfval.l ≀ = (leβ€˜πΎ)
pmapfval.a 𝐴 = (Atomsβ€˜πΎ)
pmapfval.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
pmapfval (𝐾 ∈ 𝐢 β†’ 𝑀 = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
Distinct variable groups:   𝐴,π‘Ž   π‘₯,𝐡   π‘₯,π‘Ž,𝐾
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘Ž)   𝐢(π‘₯,π‘Ž)   ≀ (π‘₯,π‘Ž)   𝑀(π‘₯,π‘Ž)

Proof of Theorem pmapfval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝐢 β†’ 𝐾 ∈ V)
2 pmapfval.m . . 3 𝑀 = (pmapβ€˜πΎ)
3 fveq2 6888 . . . . . 6 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
4 pmapfval.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
53, 4eqtr4di 2790 . . . . 5 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
6 fveq2 6888 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = (Atomsβ€˜πΎ))
7 pmapfval.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
86, 7eqtr4di 2790 . . . . . 6 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = 𝐴)
9 fveq2 6888 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = (leβ€˜πΎ))
10 pmapfval.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
119, 10eqtr4di 2790 . . . . . . 7 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = ≀ )
1211breqd 5158 . . . . . 6 (π‘˜ = 𝐾 β†’ (π‘Ž(leβ€˜π‘˜)π‘₯ ↔ π‘Ž ≀ π‘₯))
138, 12rabeqbidv 3449 . . . . 5 (π‘˜ = 𝐾 β†’ {π‘Ž ∈ (Atomsβ€˜π‘˜) ∣ π‘Ž(leβ€˜π‘˜)π‘₯} = {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯})
145, 13mpteq12dv 5238 . . . 4 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ (Baseβ€˜π‘˜) ↦ {π‘Ž ∈ (Atomsβ€˜π‘˜) ∣ π‘Ž(leβ€˜π‘˜)π‘₯}) = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
15 df-pmap 38363 . . . 4 pmap = (π‘˜ ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘˜) ↦ {π‘Ž ∈ (Atomsβ€˜π‘˜) ∣ π‘Ž(leβ€˜π‘˜)π‘₯}))
1614, 15, 4mptfvmpt 7226 . . 3 (𝐾 ∈ V β†’ (pmapβ€˜πΎ) = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
172, 16eqtrid 2784 . 2 (𝐾 ∈ V β†’ 𝑀 = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
181, 17syl 17 1 (𝐾 ∈ 𝐢 β†’ 𝑀 = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   class class class wbr 5147   ↦ cmpt 5230  β€˜cfv 6540  Basecbs 17140  lecple 17200  Atomscatm 38121  pmapcpmap 38356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-pmap 38363
This theorem is referenced by:  pmapval  38616
  Copyright terms: Public domain W3C validator