Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapfval Structured version   Visualization version   GIF version

Theorem pmapfval 39780
Description: The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b 𝐵 = (Base‘𝐾)
pmapfval.l = (le‘𝐾)
pmapfval.a 𝐴 = (Atoms‘𝐾)
pmapfval.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapfval (𝐾𝐶𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
Distinct variable groups:   𝐴,𝑎   𝑥,𝐵   𝑥,𝑎,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑎)   𝐶(𝑥,𝑎)   (𝑥,𝑎)   𝑀(𝑥,𝑎)

Proof of Theorem pmapfval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝐾𝐶𝐾 ∈ V)
2 pmapfval.m . . 3 𝑀 = (pmap‘𝐾)
3 fveq2 6881 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 pmapfval.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2789 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6881 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
7 pmapfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
86, 7eqtr4di 2789 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
9 fveq2 6881 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
10 pmapfval.l . . . . . . . 8 = (le‘𝐾)
119, 10eqtr4di 2789 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1211breqd 5135 . . . . . 6 (𝑘 = 𝐾 → (𝑎(le‘𝑘)𝑥𝑎 𝑥))
138, 12rabeqbidv 3439 . . . . 5 (𝑘 = 𝐾 → {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥} = {𝑎𝐴𝑎 𝑥})
145, 13mpteq12dv 5212 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ (Base‘𝑘) ↦ {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥}) = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
15 df-pmap 39528 . . . 4 pmap = (𝑘 ∈ V ↦ (𝑥 ∈ (Base‘𝑘) ↦ {𝑎 ∈ (Atoms‘𝑘) ∣ 𝑎(le‘𝑘)𝑥}))
1614, 15, 4mptfvmpt 7225 . . 3 (𝐾 ∈ V → (pmap‘𝐾) = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
172, 16eqtrid 2783 . 2 (𝐾 ∈ V → 𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
181, 17syl 17 1 (𝐾𝐶𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464   class class class wbr 5124  cmpt 5206  cfv 6536  Basecbs 17233  lecple 17283  Atomscatm 39286  pmapcpmap 39521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-pmap 39528
This theorem is referenced by:  pmapval  39781
  Copyright terms: Public domain W3C validator