Detailed syntax breakdown of Definition df-psubsp
Step | Hyp | Ref
| Expression |
1 | | cpsubsp 37437 |
. 2
class
PSubSp |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vs |
. . . . . . 7
setvar 𝑠 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑠 |
6 | 2 | cv 1538 |
. . . . . . 7
class 𝑘 |
7 | | catm 37204 |
. . . . . . 7
class
Atoms |
8 | 6, 7 | cfv 6418 |
. . . . . 6
class
(Atoms‘𝑘) |
9 | 5, 8 | wss 3883 |
. . . . 5
wff 𝑠 ⊆ (Atoms‘𝑘) |
10 | | vr |
. . . . . . . . . . 11
setvar 𝑟 |
11 | 10 | cv 1538 |
. . . . . . . . . 10
class 𝑟 |
12 | | vp |
. . . . . . . . . . . 12
setvar 𝑝 |
13 | 12 | cv 1538 |
. . . . . . . . . . 11
class 𝑝 |
14 | | vq |
. . . . . . . . . . . 12
setvar 𝑞 |
15 | 14 | cv 1538 |
. . . . . . . . . . 11
class 𝑞 |
16 | | cjn 17944 |
. . . . . . . . . . . 12
class
join |
17 | 6, 16 | cfv 6418 |
. . . . . . . . . . 11
class
(join‘𝑘) |
18 | 13, 15, 17 | co 7255 |
. . . . . . . . . 10
class (𝑝(join‘𝑘)𝑞) |
19 | | cple 16895 |
. . . . . . . . . . 11
class
le |
20 | 6, 19 | cfv 6418 |
. . . . . . . . . 10
class
(le‘𝑘) |
21 | 11, 18, 20 | wbr 5070 |
. . . . . . . . 9
wff 𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) |
22 | 10, 4 | wel 2109 |
. . . . . . . . 9
wff 𝑟 ∈ 𝑠 |
23 | 21, 22 | wi 4 |
. . . . . . . 8
wff (𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) |
24 | 23, 10, 8 | wral 3063 |
. . . . . . 7
wff
∀𝑟 ∈
(Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) |
25 | 24, 14, 5 | wral 3063 |
. . . . . 6
wff
∀𝑞 ∈
𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) |
26 | 25, 12, 5 | wral 3063 |
. . . . 5
wff
∀𝑝 ∈
𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) |
27 | 9, 26 | wa 395 |
. . . 4
wff (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠)) |
28 | 27, 4 | cab 2715 |
. . 3
class {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))} |
29 | 2, 3, 28 | cmpt 5153 |
. 2
class (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))}) |
30 | 1, 29 | wceq 1539 |
1
wff PSubSp =
(𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))}) |