Detailed syntax breakdown of Definition df-psubsp
| Step | Hyp | Ref
| Expression |
| 1 | | cpsubsp 39498 |
. 2
class
PSubSp |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vs |
. . . . . . 7
setvar 𝑠 |
| 5 | 4 | cv 1539 |
. . . . . 6
class 𝑠 |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑘 |
| 7 | | catm 39264 |
. . . . . . 7
class
Atoms |
| 8 | 6, 7 | cfv 6561 |
. . . . . 6
class
(Atoms‘𝑘) |
| 9 | 5, 8 | wss 3951 |
. . . . 5
wff 𝑠 ⊆ (Atoms‘𝑘) |
| 10 | | vr |
. . . . . . . . . . 11
setvar 𝑟 |
| 11 | 10 | cv 1539 |
. . . . . . . . . 10
class 𝑟 |
| 12 | | vp |
. . . . . . . . . . . 12
setvar 𝑝 |
| 13 | 12 | cv 1539 |
. . . . . . . . . . 11
class 𝑝 |
| 14 | | vq |
. . . . . . . . . . . 12
setvar 𝑞 |
| 15 | 14 | cv 1539 |
. . . . . . . . . . 11
class 𝑞 |
| 16 | | cjn 18357 |
. . . . . . . . . . . 12
class
join |
| 17 | 6, 16 | cfv 6561 |
. . . . . . . . . . 11
class
(join‘𝑘) |
| 18 | 13, 15, 17 | co 7431 |
. . . . . . . . . 10
class (𝑝(join‘𝑘)𝑞) |
| 19 | | cple 17304 |
. . . . . . . . . . 11
class
le |
| 20 | 6, 19 | cfv 6561 |
. . . . . . . . . 10
class
(le‘𝑘) |
| 21 | 11, 18, 20 | wbr 5143 |
. . . . . . . . 9
wff 𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) |
| 22 | 10, 4 | wel 2109 |
. . . . . . . . 9
wff 𝑟 ∈ 𝑠 |
| 23 | 21, 22 | wi 4 |
. . . . . . . 8
wff (𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) |
| 24 | 23, 10, 8 | wral 3061 |
. . . . . . 7
wff
∀𝑟 ∈
(Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) |
| 25 | 24, 14, 5 | wral 3061 |
. . . . . 6
wff
∀𝑞 ∈
𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) |
| 26 | 25, 12, 5 | wral 3061 |
. . . . 5
wff
∀𝑝 ∈
𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) |
| 27 | 9, 26 | wa 395 |
. . . 4
wff (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠)) |
| 28 | 27, 4 | cab 2714 |
. . 3
class {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))} |
| 29 | 2, 3, 28 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))}) |
| 30 | 1, 29 | wceq 1540 |
1
wff PSubSp =
(𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))}) |