Detailed syntax breakdown of Definition df-pnrm
Step | Hyp | Ref
| Expression |
1 | | cpnrm 22371 |
. 2
class
PNrm |
2 | | vj |
. . . . . 6
setvar 𝑗 |
3 | 2 | cv 1538 |
. . . . 5
class 𝑗 |
4 | | ccld 22075 |
. . . . 5
class
Clsd |
5 | 3, 4 | cfv 6418 |
. . . 4
class
(Clsd‘𝑗) |
6 | | vf |
. . . . . 6
setvar 𝑓 |
7 | | cn 11903 |
. . . . . . 7
class
ℕ |
8 | | cmap 8573 |
. . . . . . 7
class
↑m |
9 | 3, 7, 8 | co 7255 |
. . . . . 6
class (𝑗 ↑m
ℕ) |
10 | 6 | cv 1538 |
. . . . . . . 8
class 𝑓 |
11 | 10 | crn 5581 |
. . . . . . 7
class ran 𝑓 |
12 | 11 | cint 4876 |
. . . . . 6
class ∩ ran 𝑓 |
13 | 6, 9, 12 | cmpt 5153 |
. . . . 5
class (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) |
14 | 13 | crn 5581 |
. . . 4
class ran
(𝑓 ∈ (𝑗 ↑m ℕ)
↦ ∩ ran 𝑓) |
15 | 5, 14 | wss 3883 |
. . 3
wff
(Clsd‘𝑗)
⊆ ran (𝑓 ∈
(𝑗 ↑m
ℕ) ↦ ∩ ran 𝑓) |
16 | | cnrm 22369 |
. . 3
class
Nrm |
17 | 15, 2, 16 | crab 3067 |
. 2
class {𝑗 ∈ Nrm ∣
(Clsd‘𝑗) ⊆ ran
(𝑓 ∈ (𝑗 ↑m ℕ)
↦ ∩ ran 𝑓)} |
18 | 1, 17 | wceq 1539 |
1
wff PNrm =
{𝑗 ∈ Nrm ∣
(Clsd‘𝑗) ⊆ ran
(𝑓 ∈ (𝑗 ↑m ℕ)
↦ ∩ ran 𝑓)} |