Detailed syntax breakdown of Definition df-pnrm
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cpnrm 23320 | . 2
class
PNrm | 
| 2 |  | vj | . . . . . 6
setvar 𝑗 | 
| 3 | 2 | cv 1539 | . . . . 5
class 𝑗 | 
| 4 |  | ccld 23024 | . . . . 5
class
Clsd | 
| 5 | 3, 4 | cfv 6561 | . . . 4
class
(Clsd‘𝑗) | 
| 6 |  | vf | . . . . . 6
setvar 𝑓 | 
| 7 |  | cn 12266 | . . . . . . 7
class
ℕ | 
| 8 |  | cmap 8866 | . . . . . . 7
class 
↑m | 
| 9 | 3, 7, 8 | co 7431 | . . . . . 6
class (𝑗 ↑m
ℕ) | 
| 10 | 6 | cv 1539 | . . . . . . . 8
class 𝑓 | 
| 11 | 10 | crn 5686 | . . . . . . 7
class ran 𝑓 | 
| 12 | 11 | cint 4946 | . . . . . 6
class ∩ ran 𝑓 | 
| 13 | 6, 9, 12 | cmpt 5225 | . . . . 5
class (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) | 
| 14 | 13 | crn 5686 | . . . 4
class ran
(𝑓 ∈ (𝑗 ↑m ℕ)
↦ ∩ ran 𝑓) | 
| 15 | 5, 14 | wss 3951 | . . 3
wff
(Clsd‘𝑗)
⊆ ran (𝑓 ∈
(𝑗 ↑m
ℕ) ↦ ∩ ran 𝑓) | 
| 16 |  | cnrm 23318 | . . 3
class
Nrm | 
| 17 | 15, 2, 16 | crab 3436 | . 2
class {𝑗 ∈ Nrm ∣
(Clsd‘𝑗) ⊆ ran
(𝑓 ∈ (𝑗 ↑m ℕ)
↦ ∩ ran 𝑓)} | 
| 18 | 1, 17 | wceq 1540 | 1
wff PNrm =
{𝑗 ∈ Nrm ∣
(Clsd‘𝑗) ⊆ ran
(𝑓 ∈ (𝑗 ↑m ℕ)
↦ ∩ ran 𝑓)} |