Detailed syntax breakdown of Definition df-pnrm
Step | Hyp | Ref
| Expression |
1 | | cpnrm 21445 |
. 2
class
PNrm |
2 | | vj |
. . . . . 6
setvar 𝑗 |
3 | 2 | cv 1652 |
. . . . 5
class 𝑗 |
4 | | ccld 21149 |
. . . . 5
class
Clsd |
5 | 3, 4 | cfv 6101 |
. . . 4
class
(Clsd‘𝑗) |
6 | | vf |
. . . . . 6
setvar 𝑓 |
7 | | cn 11312 |
. . . . . . 7
class
ℕ |
8 | | cmap 8095 |
. . . . . . 7
class
↑𝑚 |
9 | 3, 7, 8 | co 6878 |
. . . . . 6
class (𝑗 ↑𝑚
ℕ) |
10 | 6 | cv 1652 |
. . . . . . . 8
class 𝑓 |
11 | 10 | crn 5313 |
. . . . . . 7
class ran 𝑓 |
12 | 11 | cint 4667 |
. . . . . 6
class ∩ ran 𝑓 |
13 | 6, 9, 12 | cmpt 4922 |
. . . . 5
class (𝑓 ∈ (𝑗 ↑𝑚 ℕ) ↦
∩ ran 𝑓) |
14 | 13 | crn 5313 |
. . . 4
class ran
(𝑓 ∈ (𝑗 ↑𝑚
ℕ) ↦ ∩ ran 𝑓) |
15 | 5, 14 | wss 3769 |
. . 3
wff
(Clsd‘𝑗)
⊆ ran (𝑓 ∈
(𝑗
↑𝑚 ℕ) ↦ ∩ ran
𝑓) |
16 | | cnrm 21443 |
. . 3
class
Nrm |
17 | 15, 2, 16 | crab 3093 |
. 2
class {𝑗 ∈ Nrm ∣
(Clsd‘𝑗) ⊆ ran
(𝑓 ∈ (𝑗 ↑𝑚
ℕ) ↦ ∩ ran 𝑓)} |
18 | 1, 17 | wceq 1653 |
1
wff PNrm =
{𝑗 ∈ Nrm ∣
(Clsd‘𝑗) ⊆ ran
(𝑓 ∈ (𝑗 ↑𝑚
ℕ) ↦ ∩ ran 𝑓)} |