| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cnrm | Structured version Visualization version GIF version | ||
| Description: Define completely normal spaces. A space is completely normal if all its subspaces are normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| df-cnrm | ⊢ CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccnrm 23264 | . 2 class CNrm | |
| 2 | vj | . . . . . . 7 setvar 𝑗 | |
| 3 | 2 | cv 1538 | . . . . . 6 class 𝑗 |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1538 | . . . . . 6 class 𝑥 |
| 6 | crest 17435 | . . . . . 6 class ↾t | |
| 7 | 3, 5, 6 | co 7412 | . . . . 5 class (𝑗 ↾t 𝑥) |
| 8 | cnrm 23263 | . . . . 5 class Nrm | |
| 9 | 7, 8 | wcel 2107 | . . . 4 wff (𝑗 ↾t 𝑥) ∈ Nrm |
| 10 | 3 | cuni 4887 | . . . . 5 class ∪ 𝑗 |
| 11 | 10 | cpw 4580 | . . . 4 class 𝒫 ∪ 𝑗 |
| 12 | 9, 4, 11 | wral 3050 | . . 3 wff ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm |
| 13 | ctop 22846 | . . 3 class Top | |
| 14 | 12, 2, 13 | crab 3419 | . 2 class {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm} |
| 15 | 1, 14 | wceq 1539 | 1 wff CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm} |
| Colors of variables: wff setvar class |
| This definition is referenced by: iscnrm 23276 |
| Copyright terms: Public domain | W3C validator |