Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ispnrm | Structured version Visualization version GIF version |
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ispnrm | ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . 3 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
2 | oveq1 7282 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑗 ↑m ℕ) = (𝐽 ↑m ℕ)) | |
3 | 2 | mpteq1d 5169 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) |
4 | 3 | rneqd 5847 | . . 3 ⊢ (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) = ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) |
5 | 1, 4 | sseq12d 3954 | . 2 ⊢ (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) |
6 | df-pnrm 22470 | . 2 ⊢ PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓)} | |
7 | 5, 6 | elrab2 3627 | 1 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∩ cint 4879 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℕcn 11973 Clsdccld 22167 Nrmcnrm 22461 PNrmcpnrm 22463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-cnv 5597 df-dm 5599 df-rn 5600 df-iota 6391 df-fv 6441 df-ov 7278 df-pnrm 22470 |
This theorem is referenced by: pnrmnrm 22491 pnrmcld 22493 |
Copyright terms: Public domain | W3C validator |