MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispnrm Structured version   Visualization version   GIF version

Theorem ispnrm 23254
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ispnrm (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
Distinct variable group:   𝑓,𝐽

Proof of Theorem ispnrm
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
2 oveq1 7353 . . . . 5 (𝑗 = 𝐽 → (𝑗m ℕ) = (𝐽m ℕ))
32mpteq1d 5179 . . . 4 (𝑗 = 𝐽 → (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) = (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓))
43rneqd 5877 . . 3 (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) = ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓))
51, 4sseq12d 3963 . 2 (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
6 df-pnrm 23234 . 2 PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓)}
75, 6elrab2 3645 1 (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897   cint 4895  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  m cmap 8750  cn 12125  Clsdccld 22931  Nrmcnrm 23225  PNrmcpnrm 23227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-cnv 5622  df-dm 5624  df-rn 5625  df-iota 6437  df-fv 6489  df-ov 7349  df-pnrm 23234
This theorem is referenced by:  pnrmnrm  23255  pnrmcld  23257
  Copyright terms: Public domain W3C validator