MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispnrm Structured version   Visualization version   GIF version

Theorem ispnrm 23224
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ispnrm (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
Distinct variable group:   𝑓,𝐽

Proof of Theorem ispnrm
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
2 oveq1 7356 . . . . 5 (𝑗 = 𝐽 → (𝑗m ℕ) = (𝐽m ℕ))
32mpteq1d 5182 . . . 4 (𝑗 = 𝐽 → (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) = (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓))
43rneqd 5880 . . 3 (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) = ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓))
51, 4sseq12d 3969 . 2 (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
6 df-pnrm 23204 . 2 PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓)}
75, 6elrab2 3651 1 (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3903   cint 4896  cmpt 5173  ran crn 5620  cfv 6482  (class class class)co 7349  m cmap 8753  cn 12128  Clsdccld 22901  Nrmcnrm 23195  PNrmcpnrm 23197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-cnv 5627  df-dm 5629  df-rn 5630  df-iota 6438  df-fv 6490  df-ov 7352  df-pnrm 23204
This theorem is referenced by:  pnrmnrm  23225  pnrmcld  23227
  Copyright terms: Public domain W3C validator