MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispnrm Structured version   Visualization version   GIF version

Theorem ispnrm 23368
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ispnrm (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
Distinct variable group:   𝑓,𝐽

Proof of Theorem ispnrm
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . 3 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
2 oveq1 7455 . . . . 5 (𝑗 = 𝐽 → (𝑗m ℕ) = (𝐽m ℕ))
32mpteq1d 5261 . . . 4 (𝑗 = 𝐽 → (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) = (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓))
43rneqd 5963 . . 3 (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) = ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓))
51, 4sseq12d 4042 . 2 (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
6 df-pnrm 23348 . 2 PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓)}
75, 6elrab2 3711 1 (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976   cint 4970  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  m cmap 8884  cn 12293  Clsdccld 23045  Nrmcnrm 23339  PNrmcpnrm 23341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-cnv 5708  df-dm 5710  df-rn 5711  df-iota 6525  df-fv 6581  df-ov 7451  df-pnrm 23348
This theorem is referenced by:  pnrmnrm  23369  pnrmcld  23371
  Copyright terms: Public domain W3C validator