![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ispnrm | Structured version Visualization version GIF version |
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ispnrm | ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . 3 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
2 | oveq1 7438 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑗 ↑m ℕ) = (𝐽 ↑m ℕ)) | |
3 | 2 | mpteq1d 5243 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) |
4 | 3 | rneqd 5952 | . . 3 ⊢ (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) = ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) |
5 | 1, 4 | sseq12d 4029 | . 2 ⊢ (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) |
6 | df-pnrm 23343 | . 2 ⊢ PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓)} | |
7 | 5, 6 | elrab2 3698 | 1 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ∩ cint 4951 ↦ cmpt 5231 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℕcn 12264 Clsdccld 23040 Nrmcnrm 23334 PNrmcpnrm 23336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-cnv 5697 df-dm 5699 df-rn 5700 df-iota 6516 df-fv 6571 df-ov 7434 df-pnrm 23343 |
This theorem is referenced by: pnrmnrm 23364 pnrmcld 23366 |
Copyright terms: Public domain | W3C validator |