MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispnrm Structured version   Visualization version   GIF version

Theorem ispnrm 22713
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ispnrm (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
Distinct variable group:   𝑓,𝐽

Proof of Theorem ispnrm
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6846 . . 3 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
2 oveq1 7368 . . . . 5 (𝑗 = 𝐽 → (𝑗m ℕ) = (𝐽m ℕ))
32mpteq1d 5204 . . . 4 (𝑗 = 𝐽 → (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) = (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓))
43rneqd 5897 . . 3 (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) = ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓))
51, 4sseq12d 3981 . 2 (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
6 df-pnrm 22693 . 2 PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓)}
75, 6elrab2 3652 1 (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wss 3914   cint 4911  cmpt 5192  ran crn 5638  cfv 6500  (class class class)co 7361  m cmap 8771  cn 12161  Clsdccld 22390  Nrmcnrm 22684  PNrmcpnrm 22686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-cnv 5645  df-dm 5647  df-rn 5648  df-iota 6452  df-fv 6508  df-ov 7364  df-pnrm 22693
This theorem is referenced by:  pnrmnrm  22714  pnrmcld  22716
  Copyright terms: Public domain W3C validator