| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ispnrm | Structured version Visualization version GIF version | ||
| Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| ispnrm | ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . 3 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
| 2 | oveq1 7417 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑗 ↑m ℕ) = (𝐽 ↑m ℕ)) | |
| 3 | 2 | mpteq1d 5215 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) |
| 4 | 3 | rneqd 5923 | . . 3 ⊢ (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) = ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) |
| 5 | 1, 4 | sseq12d 3997 | . 2 ⊢ (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) |
| 6 | df-pnrm 23262 | . 2 ⊢ PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓)} | |
| 7 | 5, 6 | elrab2 3679 | 1 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∩ cint 4927 ↦ cmpt 5206 ran crn 5660 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 ℕcn 12245 Clsdccld 22959 Nrmcnrm 23253 PNrmcpnrm 23255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-cnv 5667 df-dm 5669 df-rn 5670 df-iota 6489 df-fv 6544 df-ov 7413 df-pnrm 23262 |
| This theorem is referenced by: pnrmnrm 23283 pnrmcld 23285 |
| Copyright terms: Public domain | W3C validator |