MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispnrm Structured version   Visualization version   GIF version

Theorem ispnrm 21654
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ispnrm (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽𝑚 ℕ) ↦ ran 𝑓)))
Distinct variable group:   𝑓,𝐽

Proof of Theorem ispnrm
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6501 . . 3 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
2 oveq1 6985 . . . . 5 (𝑗 = 𝐽 → (𝑗𝑚 ℕ) = (𝐽𝑚 ℕ))
32mpteq1d 5017 . . . 4 (𝑗 = 𝐽 → (𝑓 ∈ (𝑗𝑚 ℕ) ↦ ran 𝑓) = (𝑓 ∈ (𝐽𝑚 ℕ) ↦ ran 𝑓))
43rneqd 5652 . . 3 (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗𝑚 ℕ) ↦ ran 𝑓) = ran (𝑓 ∈ (𝐽𝑚 ℕ) ↦ ran 𝑓))
51, 4sseq12d 3892 . 2 (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗𝑚 ℕ) ↦ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽𝑚 ℕ) ↦ ran 𝑓)))
6 df-pnrm 21634 . 2 PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗𝑚 ℕ) ↦ ran 𝑓)}
75, 6elrab2 3599 1 (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽𝑚 ℕ) ↦ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1507  wcel 2050  wss 3831   cint 4750  cmpt 5009  ran crn 5409  cfv 6190  (class class class)co 6978  𝑚 cmap 8208  cn 11441  Clsdccld 21331  Nrmcnrm 21625  PNrmcpnrm 21627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-br 4931  df-opab 4993  df-mpt 5010  df-cnv 5416  df-dm 5418  df-rn 5419  df-iota 6154  df-fv 6198  df-ov 6981  df-pnrm 21634
This theorem is referenced by:  pnrmnrm  21655  pnrmcld  21657
  Copyright terms: Public domain W3C validator