![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ispnrm | Structured version Visualization version GIF version |
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ispnrm | ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6501 | . . 3 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
2 | oveq1 6985 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑗 ↑𝑚 ℕ) = (𝐽 ↑𝑚 ℕ)) | |
3 | 2 | mpteq1d 5017 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑓 ∈ (𝑗 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)) |
4 | 3 | rneqd 5652 | . . 3 ⊢ (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) = ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)) |
5 | 1, 4 | sseq12d 3892 | . 2 ⊢ (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓))) |
6 | df-pnrm 21634 | . 2 ⊢ PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)} | |
7 | 5, 6 | elrab2 3599 | 1 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ⊆ wss 3831 ∩ cint 4750 ↦ cmpt 5009 ran crn 5409 ‘cfv 6190 (class class class)co 6978 ↑𝑚 cmap 8208 ℕcn 11441 Clsdccld 21331 Nrmcnrm 21625 PNrmcpnrm 21627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-opab 4993 df-mpt 5010 df-cnv 5416 df-dm 5418 df-rn 5419 df-iota 6154 df-fv 6198 df-ov 6981 df-pnrm 21634 |
This theorem is referenced by: pnrmnrm 21655 pnrmcld 21657 |
Copyright terms: Public domain | W3C validator |