MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0 Structured version   Visualization version   GIF version

Theorem ist0 21920
Description: The predicate "is a T0 space". Every pair of distinct points is topologically distinguishable. For the way this definition is usually encountered, see ist0-3 21945. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
ist0 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑜,𝑦,𝐽   𝑜,𝑋,𝑥,𝑦

Proof of Theorem ist0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4838 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ist0.1 . . . 4 𝑋 = 𝐽
31, 2syl6eqr 2872 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 raleq 3404 . . . . 5 (𝑗 = 𝐽 → (∀𝑜𝑗 (𝑥𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
54imbi1d 344 . . . 4 (𝑗 = 𝐽 → ((∀𝑜𝑗 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
63, 5raleqbidv 3400 . . 3 (𝑗 = 𝐽 → (∀𝑦 𝑗(∀𝑜𝑗 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
73, 6raleqbidv 3400 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 𝑗(∀𝑜𝑗 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
8 df-t0 21913 . 2 Kol2 = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗(∀𝑜𝑗 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)}
97, 8elrab2 3681 1 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136   cuni 4830  Topctop 21493  Kol2ct0 21906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-uni 4831  df-t0 21913
This theorem is referenced by:  t0sep  21924  t0top  21929  ist0-2  21944  cnt0  21946
  Copyright terms: Public domain W3C validator