MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0 Structured version   Visualization version   GIF version

Theorem ist0 23214
Description: The predicate "is a T0 space". Every pair of distinct points is topologically distinguishable. For the way this definition is usually encountered, see ist0-3 23239. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
ist0 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑜,𝑦,𝐽   𝑜,𝑋,𝑥,𝑦

Proof of Theorem ist0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4885 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ist0.1 . . . 4 𝑋 = 𝐽
31, 2eqtr4di 2783 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 raleq 3298 . . . . 5 (𝑗 = 𝐽 → (∀𝑜𝑗 (𝑥𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
54imbi1d 341 . . . 4 (𝑗 = 𝐽 → ((∀𝑜𝑗 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
63, 5raleqbidv 3321 . . 3 (𝑗 = 𝐽 → (∀𝑦 𝑗(∀𝑜𝑗 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
73, 6raleqbidv 3321 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 𝑗(∀𝑜𝑗 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
8 df-t0 23207 . 2 Kol2 = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗(∀𝑜𝑗 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)}
97, 8elrab2 3665 1 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045   cuni 4874  Topctop 22787  Kol2ct0 23200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-ss 3934  df-uni 4875  df-t0 23207
This theorem is referenced by:  t0sep  23218  t0top  23223  ist0-2  23238  cnt0  23240  ist0cld  33830
  Copyright terms: Public domain W3C validator