![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pointsetN | Structured version Visualization version GIF version |
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pointset.a | β’ π΄ = (AtomsβπΎ) |
pointset.p | β’ π = (PointsβπΎ) |
Ref | Expression |
---|---|
pointsetN | β’ (πΎ β π΅ β π = {π β£ βπ β π΄ π = {π}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 β’ (πΎ β π΅ β πΎ β V) | |
2 | pointset.p | . . 3 β’ π = (PointsβπΎ) | |
3 | fveq2 6891 | . . . . . . 7 β’ (π = πΎ β (Atomsβπ) = (AtomsβπΎ)) | |
4 | pointset.a | . . . . . . 7 β’ π΄ = (AtomsβπΎ) | |
5 | 3, 4 | eqtr4di 2790 | . . . . . 6 β’ (π = πΎ β (Atomsβπ) = π΄) |
6 | 5 | rexeqdv 3326 | . . . . 5 β’ (π = πΎ β (βπ β (Atomsβπ)π = {π} β βπ β π΄ π = {π})) |
7 | 6 | abbidv 2801 | . . . 4 β’ (π = πΎ β {π β£ βπ β (Atomsβπ)π = {π}} = {π β£ βπ β π΄ π = {π}}) |
8 | df-pointsN 38368 | . . . 4 β’ Points = (π β V β¦ {π β£ βπ β (Atomsβπ)π = {π}}) | |
9 | 4 | fvexi 6905 | . . . . 5 β’ π΄ β V |
10 | 9 | abrexex 7948 | . . . 4 β’ {π β£ βπ β π΄ π = {π}} β V |
11 | 7, 8, 10 | fvmpt 6998 | . . 3 β’ (πΎ β V β (PointsβπΎ) = {π β£ βπ β π΄ π = {π}}) |
12 | 2, 11 | eqtrid 2784 | . 2 β’ (πΎ β V β π = {π β£ βπ β π΄ π = {π}}) |
13 | 1, 12 | syl 17 | 1 β’ (πΎ β π΅ β π = {π β£ βπ β π΄ π = {π}}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {cab 2709 βwrex 3070 Vcvv 3474 {csn 4628 βcfv 6543 Atomscatm 38128 PointscpointsN 38361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-pointsN 38368 |
This theorem is referenced by: ispointN 38608 |
Copyright terms: Public domain | W3C validator |