Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pointsetN | Structured version Visualization version GIF version |
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pointset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pointset.p | ⊢ 𝑃 = (Points‘𝐾) |
Ref | Expression |
---|---|
pointsetN | ⊢ (𝐾 ∈ 𝐵 → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3426 | . 2 ⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | |
2 | pointset.p | . . 3 ⊢ 𝑃 = (Points‘𝐾) | |
3 | fveq2 6717 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
4 | pointset.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
6 | 5 | rexeqdv 3326 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎} ↔ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎})) |
7 | 6 | abbidv 2807 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}} = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
8 | df-pointsN 37253 | . . . 4 ⊢ Points = (𝑘 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}}) | |
9 | 4 | fvexi 6731 | . . . . 5 ⊢ 𝐴 ∈ V |
10 | 9 | abrexex 7735 | . . . 4 ⊢ {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}} ∈ V |
11 | 7, 8, 10 | fvmpt 6818 | . . 3 ⊢ (𝐾 ∈ V → (Points‘𝐾) = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
12 | 2, 11 | syl5eq 2790 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
13 | 1, 12 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐵 → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 {cab 2714 ∃wrex 3062 Vcvv 3408 {csn 4541 ‘cfv 6380 Atomscatm 37014 PointscpointsN 37246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-pointsN 37253 |
This theorem is referenced by: ispointN 37493 |
Copyright terms: Public domain | W3C validator |