Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pointsetN Structured version   Visualization version   GIF version

Theorem pointsetN 39735
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pointset.a 𝐴 = (Atoms‘𝐾)
pointset.p 𝑃 = (Points‘𝐾)
Assertion
Ref Expression
pointsetN (𝐾𝐵𝑃 = {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}})
Distinct variable groups:   𝑝,𝑎,𝐴   𝐾,𝑝
Allowed substitution hints:   𝐵(𝑝,𝑎)   𝑃(𝑝,𝑎)   𝐾(𝑎)

Proof of Theorem pointsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝐾𝐵𝐾 ∈ V)
2 pointset.p . . 3 𝑃 = (Points‘𝐾)
3 fveq2 6858 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 pointset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2782 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65rexeqdv 3300 . . . . 5 (𝑘 = 𝐾 → (∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎} ↔ ∃𝑎𝐴 𝑝 = {𝑎}))
76abbidv 2795 . . . 4 (𝑘 = 𝐾 → {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}} = {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}})
8 df-pointsN 39496 . . . 4 Points = (𝑘 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}})
94fvexi 6872 . . . . 5 𝐴 ∈ V
109abrexex 7941 . . . 4 {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}} ∈ V
117, 8, 10fvmpt 6968 . . 3 (𝐾 ∈ V → (Points‘𝐾) = {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}})
122, 11eqtrid 2776 . 2 (𝐾 ∈ V → 𝑃 = {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}})
131, 12syl 17 1 (𝐾𝐵𝑃 = {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  {csn 4589  cfv 6511  Atomscatm 39256  PointscpointsN 39489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-pointsN 39496
This theorem is referenced by:  ispointN  39736
  Copyright terms: Public domain W3C validator