Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pointsetN Structured version   Visualization version   GIF version

Theorem pointsetN 37755
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pointset.a 𝐴 = (Atoms‘𝐾)
pointset.p 𝑃 = (Points‘𝐾)
Assertion
Ref Expression
pointsetN (𝐾𝐵𝑃 = {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}})
Distinct variable groups:   𝑝,𝑎,𝐴   𝐾,𝑝
Allowed substitution hints:   𝐵(𝑝,𝑎)   𝑃(𝑝,𝑎)   𝐾(𝑎)

Proof of Theorem pointsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐾𝐵𝐾 ∈ V)
2 pointset.p . . 3 𝑃 = (Points‘𝐾)
3 fveq2 6774 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 pointset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2796 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65rexeqdv 3349 . . . . 5 (𝑘 = 𝐾 → (∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎} ↔ ∃𝑎𝐴 𝑝 = {𝑎}))
76abbidv 2807 . . . 4 (𝑘 = 𝐾 → {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}} = {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}})
8 df-pointsN 37516 . . . 4 Points = (𝑘 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}})
94fvexi 6788 . . . . 5 𝐴 ∈ V
109abrexex 7805 . . . 4 {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}} ∈ V
117, 8, 10fvmpt 6875 . . 3 (𝐾 ∈ V → (Points‘𝐾) = {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}})
122, 11eqtrid 2790 . 2 (𝐾 ∈ V → 𝑃 = {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}})
131, 12syl 17 1 (𝐾𝐵𝑃 = {𝑝 ∣ ∃𝑎𝐴 𝑝 = {𝑎}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  Vcvv 3432  {csn 4561  cfv 6433  Atomscatm 37277  PointscpointsN 37509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-pointsN 37516
This theorem is referenced by:  ispointN  37756
  Copyright terms: Public domain W3C validator