| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pointsetN | Structured version Visualization version GIF version | ||
| Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pointset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pointset.p | ⊢ 𝑃 = (Points‘𝐾) |
| Ref | Expression |
|---|---|
| pointsetN | ⊢ (𝐾 ∈ 𝐵 → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | |
| 2 | pointset.p | . . 3 ⊢ 𝑃 = (Points‘𝐾) | |
| 3 | fveq2 6817 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
| 4 | pointset.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
| 6 | 5 | rexeqdv 3293 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎} ↔ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎})) |
| 7 | 6 | abbidv 2797 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}} = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
| 8 | df-pointsN 39541 | . . . 4 ⊢ Points = (𝑘 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}}) | |
| 9 | 4 | fvexi 6831 | . . . . 5 ⊢ 𝐴 ∈ V |
| 10 | 9 | abrexex 7889 | . . . 4 ⊢ {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}} ∈ V |
| 11 | 7, 8, 10 | fvmpt 6924 | . . 3 ⊢ (𝐾 ∈ V → (Points‘𝐾) = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
| 12 | 2, 11 | eqtrid 2778 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
| 13 | 1, 12 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐵 → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 {csn 4571 ‘cfv 6476 Atomscatm 39302 PointscpointsN 39534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-pointsN 39541 |
| This theorem is referenced by: ispointN 39781 |
| Copyright terms: Public domain | W3C validator |