![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pointsetN | Structured version Visualization version GIF version |
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pointset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pointset.p | ⊢ 𝑃 = (Points‘𝐾) |
Ref | Expression |
---|---|
pointsetN | ⊢ (𝐾 ∈ 𝐵 → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3433 | . 2 ⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | |
2 | pointset.p | . . 3 ⊢ 𝑃 = (Points‘𝐾) | |
3 | fveq2 6501 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
4 | pointset.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | syl6eqr 2832 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
6 | 5 | rexeqdv 3356 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎} ↔ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎})) |
7 | 6 | abbidv 2843 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}} = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
8 | df-pointsN 36083 | . . . 4 ⊢ Points = (𝑘 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}}) | |
9 | 4 | fvexi 6515 | . . . . 5 ⊢ 𝐴 ∈ V |
10 | 9 | abrexex 7477 | . . . 4 ⊢ {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}} ∈ V |
11 | 7, 8, 10 | fvmpt 6597 | . . 3 ⊢ (𝐾 ∈ V → (Points‘𝐾) = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
12 | 2, 11 | syl5eq 2826 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
13 | 1, 12 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐵 → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 {cab 2758 ∃wrex 3089 Vcvv 3415 {csn 4442 ‘cfv 6190 Atomscatm 35844 PointscpointsN 36076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pr 5187 ax-un 7281 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-id 5313 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-pointsN 36083 |
This theorem is referenced by: ispointN 36323 |
Copyright terms: Public domain | W3C validator |