![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pointsetN | Structured version Visualization version GIF version |
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pointset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pointset.p | ⊢ 𝑃 = (Points‘𝐾) |
Ref | Expression |
---|---|
pointsetN | ⊢ (𝐾 ∈ 𝐵 → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | |
2 | pointset.p | . . 3 ⊢ 𝑃 = (Points‘𝐾) | |
3 | fveq2 6907 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
4 | pointset.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | eqtr4di 2793 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
6 | 5 | rexeqdv 3325 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎} ↔ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎})) |
7 | 6 | abbidv 2806 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}} = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
8 | df-pointsN 39485 | . . . 4 ⊢ Points = (𝑘 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ (Atoms‘𝑘)𝑝 = {𝑎}}) | |
9 | 4 | fvexi 6921 | . . . . 5 ⊢ 𝐴 ∈ V |
10 | 9 | abrexex 7986 | . . . 4 ⊢ {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}} ∈ V |
11 | 7, 8, 10 | fvmpt 7016 | . . 3 ⊢ (𝐾 ∈ V → (Points‘𝐾) = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
12 | 2, 11 | eqtrid 2787 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
13 | 1, 12 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐵 → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 Vcvv 3478 {csn 4631 ‘cfv 6563 Atomscatm 39245 PointscpointsN 39478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-pointsN 39485 |
This theorem is referenced by: ispointN 39725 |
Copyright terms: Public domain | W3C validator |