Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pointsetN Structured version   Visualization version   GIF version

Theorem pointsetN 38607
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pointset.a 𝐴 = (Atomsβ€˜πΎ)
pointset.p 𝑃 = (Pointsβ€˜πΎ)
Assertion
Ref Expression
pointsetN (𝐾 ∈ 𝐡 β†’ 𝑃 = {𝑝 ∣ βˆƒπ‘Ž ∈ 𝐴 𝑝 = {π‘Ž}})
Distinct variable groups:   𝑝,π‘Ž,𝐴   𝐾,𝑝
Allowed substitution hints:   𝐡(𝑝,π‘Ž)   𝑃(𝑝,π‘Ž)   𝐾(π‘Ž)

Proof of Theorem pointsetN
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝐡 β†’ 𝐾 ∈ V)
2 pointset.p . . 3 𝑃 = (Pointsβ€˜πΎ)
3 fveq2 6891 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = (Atomsβ€˜πΎ))
4 pointset.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
53, 4eqtr4di 2790 . . . . . 6 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = 𝐴)
65rexeqdv 3326 . . . . 5 (π‘˜ = 𝐾 β†’ (βˆƒπ‘Ž ∈ (Atomsβ€˜π‘˜)𝑝 = {π‘Ž} ↔ βˆƒπ‘Ž ∈ 𝐴 𝑝 = {π‘Ž}))
76abbidv 2801 . . . 4 (π‘˜ = 𝐾 β†’ {𝑝 ∣ βˆƒπ‘Ž ∈ (Atomsβ€˜π‘˜)𝑝 = {π‘Ž}} = {𝑝 ∣ βˆƒπ‘Ž ∈ 𝐴 𝑝 = {π‘Ž}})
8 df-pointsN 38368 . . . 4 Points = (π‘˜ ∈ V ↦ {𝑝 ∣ βˆƒπ‘Ž ∈ (Atomsβ€˜π‘˜)𝑝 = {π‘Ž}})
94fvexi 6905 . . . . 5 𝐴 ∈ V
109abrexex 7948 . . . 4 {𝑝 ∣ βˆƒπ‘Ž ∈ 𝐴 𝑝 = {π‘Ž}} ∈ V
117, 8, 10fvmpt 6998 . . 3 (𝐾 ∈ V β†’ (Pointsβ€˜πΎ) = {𝑝 ∣ βˆƒπ‘Ž ∈ 𝐴 𝑝 = {π‘Ž}})
122, 11eqtrid 2784 . 2 (𝐾 ∈ V β†’ 𝑃 = {𝑝 ∣ βˆƒπ‘Ž ∈ 𝐴 𝑝 = {π‘Ž}})
131, 12syl 17 1 (𝐾 ∈ 𝐡 β†’ 𝑃 = {𝑝 ∣ βˆƒπ‘Ž ∈ 𝐴 𝑝 = {π‘Ž}})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆƒwrex 3070  Vcvv 3474  {csn 4628  β€˜cfv 6543  Atomscatm 38128  PointscpointsN 38361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-pointsN 38368
This theorem is referenced by:  ispointN  38608
  Copyright terms: Public domain W3C validator