Home | Metamath
Proof Explorer Theorem List (p. 391 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cdleml5N 39001* | Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) | ||
Theorem | cdleml6 39002* | Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) & ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) & ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) & ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∈ 𝐸 ∧ (𝑈‘(𝑠‘ℎ)) = ℎ)) | ||
Theorem | cdleml7 39003* | Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) & ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) & ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) & ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) | ||
Theorem | cdleml8 39004* | Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) & ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) & ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) & ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) | ||
Theorem | cdleml9 39005* | Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) & ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) & ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) & ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ≠ 0 ) | ||
Theorem | dva1dim 39006* | Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 38584. 𝐸 is the division ring base by erngdv 39014, and 𝑠‘𝐹 is the scalar product by dvavsca 39038. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) | ||
Theorem | dvhb1dimN 39007* | Two expressions for the 1-dimensional subspaces of vector space H, in the isomorphism B case where the 2nd vector component is zero. (Contributed by NM, 23-Feb-2014.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 0 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠 ∈ 𝐸 𝑔 = 〈(𝑠‘𝐹), 0 〉} = {𝑔 ∈ (𝑇 × 𝐸) ∣ ((𝑅‘(1st ‘𝑔)) ≤ (𝑅‘𝐹) ∧ (2nd ‘𝑔) = 0 )}) | ||
Theorem | erng1lem 39008 | Value of the endomorphism division ring unit. (Contributed by NM, 12-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐷) = ( I ↾ 𝑇)) | ||
Theorem | erngdvlem1 39009* | Lemma for eringring 39013. (Contributed by NM, 4-Aug-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) | ||
Theorem | erngdvlem2N 39010* | Lemma for eringring 39013. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Abel) | ||
Theorem | erngdvlem3 39011* | Lemma for eringring 39013. (Contributed by NM, 6-Aug-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) & ⊢ + = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑎 ∘ 𝑏)) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) | ||
Theorem | erngdvlem4 39012* | Lemma for erngdv 39014. (Contributed by NM, 11-Aug-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) & ⊢ + = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑎 ∘ 𝑏)) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) & ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) & ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) & ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing) | ||
Theorem | eringring 39013 | An endomorphism ring is a ring. TODO: fix comment. (Contributed by NM, 4-Aug-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) | ||
Theorem | erngdv 39014 | An endomorphism ring is a division ring. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ DivRing) | ||
Theorem | erng0g 39015* | The division ring zero of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 0 = (0g‘𝐷) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 𝑂) | ||
Theorem | erng1r 39016 | The division ring unit of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 1 = (1r‘𝐷) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 1 = ( I ↾ 𝑇)) | ||
Theorem | erngdvlem1-rN 39017* | Lemma for eringring 39013. (Contributed by NM, 4-Aug-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) | ||
Theorem | erngdvlem2-rN 39018* | Lemma for eringring 39013. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Abel) | ||
Theorem | erngdvlem3-rN 39019* | Lemma for eringring 39013. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) & ⊢ 𝑀 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑏 ∘ 𝑎)) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) | ||
Theorem | erngdvlem4-rN 39020* | Lemma for erngdv 39014. (Contributed by NM, 11-Aug-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) & ⊢ 𝑀 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑏 ∘ 𝑎)) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) & ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) & ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) & ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing) | ||
Theorem | erngring-rN 39021 | An endomorphism ring is a ring. TODO: fix comment. (Contributed by NM, 4-Aug-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) | ||
Theorem | erngdv-rN 39022 | An endomorphism ring is a division ring. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ DivRing) | ||
Syntax | cdveca 39023 | Extend class notation with constructed vector space A. |
class DVecA | ||
Definition | df-dveca 39024* | Define constructed partial vector space A. (Contributed by NM, 8-Oct-2013.) |
⊢ DVecA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠‘𝑓))〉}))) | ||
Theorem | dvafset 39025* | The constructed partial vector space A for a lattice 𝐾. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (DVecA‘𝐾) = (𝑤 ∈ 𝐻 ↦ ({〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠‘𝑓))〉}))) | ||
Theorem | dvaset 39026* | The constructed partial vector space A for a lattice 𝐾. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑈 = ({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉})) | ||
Theorem | dvasca 39027 | The ring base set of the constructed partial vector space A are all translation group endomorphisms (for a fiducial co-atom 𝑊). (Contributed by NM, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐹 = 𝐷) | ||
Theorem | dvabase 39028 | The ring base set of the constructed partial vector space A are all translation group endomorphisms (for a fiducial co-atom 𝑊). (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝐶 = (Base‘𝐹) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐶 = 𝐸) | ||
Theorem | dvafplusg 39029* | Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ + = (+g‘𝐹) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) | ||
Theorem | dvaplusg 39030* | Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ + = (+g‘𝐹) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 + 𝑆) = (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))) | ||
Theorem | dvaplusgv 39031 | Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ + = (+g‘𝐹) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) | ||
Theorem | dvafmulr 39032* | Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ · = (.r‘𝐹) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))) | ||
Theorem | dvamulr 39033 | Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ · = (.r‘𝐹) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 · 𝑆) = (𝑅 ∘ 𝑆)) | ||
Theorem | dvavbase 39034 | The vectors (vector base set) of the constructed partial vector space A are all translations (for a fiducial co-atom 𝑊). (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑉 = 𝑇) | ||
Theorem | dvafvadd 39035* | The vector sum operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → + = (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))) | ||
Theorem | dvavadd 39036 | Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐹 + 𝐺) = (𝐹 ∘ 𝐺)) | ||
Theorem | dvafvsca 39037* | Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))) | ||
Theorem | dvavsca 39038 | Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → (𝑅 · 𝐹) = (𝑅‘𝐹)) | ||
Theorem | tendospcl 39039 | Closure of endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑈‘𝐹) ∈ 𝑇) | ||
Theorem | tendospass 39040 | Associative law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) | ||
Theorem | tendospdi1 39041 | Forward distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑈‘(𝐹 ∘ 𝐺)) = ((𝑈‘𝐹) ∘ (𝑈‘𝐺))) | ||
Theorem | tendocnv 39042 | Converse of a trace-preserving endomorphism value. (Contributed by NM, 7-Apr-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ◡(𝑆‘𝐹) = (𝑆‘◡𝐹)) | ||
Theorem | tendospdi2 39043* | Reverse distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.) |
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) | ||
Theorem | tendospcanN 39044* | Cancellation law for trace-preserving endomorphism values (used as scalar product). (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑆‘𝐹) = (𝑆‘𝐺) ↔ 𝐹 = 𝐺)) | ||
Theorem | dvaabl 39045 | The constructed partial vector space A for a lattice 𝐾 is an abelian group. (Contributed by NM, 11-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ Abel) | ||
Theorem | dvalveclem 39046 | Lemma for dvalvec 39047. (Contributed by NM, 11-Oct-2013.) (Proof shortened by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⨣ = (+g‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LVec) | ||
Theorem | dvalvec 39047 | The constructed partial vector space A for a lattice 𝐾 is a left vector space. (Contributed by NM, 11-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LVec) | ||
Theorem | dva0g 39048 | The zero vector of partial vector space A. (Contributed by NM, 9-Sep-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = ( I ↾ 𝐵)) | ||
Syntax | cdia 39049 | Extend class notation with partial isomorphism A. |
class DIsoA | ||
Definition | df-disoa 39050* | Define partial isomorphism A. (Contributed by NM, 15-Oct-2013.) |
⊢ DIsoA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}))) | ||
Theorem | diaffval 39051* | The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (DIsoA‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) ≤ 𝑥}))) | ||
Theorem | diafval 39052* | The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊} ↦ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑥})) | ||
Theorem | diaval 39053* | The partial isomorphism A for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 120 line 24. (Contributed by NM, 15-Oct-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) | ||
Theorem | diaelval 39054 | Member of the partial isomorphism A for a lattice 𝐾. (Contributed by NM, 3-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋))) | ||
Theorem | diafn 39055* | Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) | ||
Theorem | diadm 39056* | Domain of the partial isomorphism A. (Contributed by NM, 3-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) | ||
Theorem | diaeldm 39057 | Member of domain of the partial isomorphism A. (Contributed by NM, 4-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) | ||
Theorem | diadmclN 39058 | A member of domain of the partial isomorphism A is a lattice element. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ 𝐵) | ||
Theorem | diadmleN 39059 | A member of domain of the partial isomorphism A is under the fiducial hyperplane. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ≤ 𝑊) | ||
Theorem | dian0 39060 | The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) | ||
Theorem | dia0eldmN 39061 | The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ dom 𝐼) | ||
Theorem | dia1eldmN 39062 | The fiducial hyperplane (the largest allowed lattice element) belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ dom 𝐼) | ||
Theorem | diass 39063 | The value of the partial isomorphism A is a set of translations, i.e., a set of vectors. (Contributed by NM, 26-Nov-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ⊆ 𝑇) | ||
Theorem | diael 39064 | A member of the value of the partial isomorphism A is a translation, i.e., a vector. (Contributed by NM, 17-Jan-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝐹 ∈ (𝐼‘𝑋)) → 𝐹 ∈ 𝑇) | ||
Theorem | diatrl 39065 | Trace of a member of the partial isomorphism A. (Contributed by NM, 17-Jan-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝐹 ∈ (𝐼‘𝑋)) → (𝑅‘𝐹) ≤ 𝑋) | ||
Theorem | diaelrnN 39066 | Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) | ||
Theorem | dialss 39067 | The value of partial isomorphism A is a subspace of partial vector space A. Part of Lemma M of [Crawley] p. 120 line 26. (Contributed by NM, 17-Jan-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ 𝑆) | ||
Theorem | diaord 39068 | The partial isomorphism A for a lattice 𝐾 is order-preserving in the region under co-atom 𝑊. Part of Lemma M of [Crawley] p. 120 line 28. (Contributed by NM, 26-Nov-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) | ||
Theorem | dia11N 39069 | The partial isomorphism A for a lattice 𝐾 is one-to-one in the region under co-atom 𝑊. Part of Lemma M of [Crawley] p. 120 line 28. (Contributed by NM, 25-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) = (𝐼‘𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | diaf11N 39070 | The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) | ||
Theorem | diaclN 39071 | Closure of partial isomorphism A for a lattice 𝐾. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) | ||
Theorem | diacnvclN 39072 | Closure of partial isomorphism A converse. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ dom 𝐼) | ||
Theorem | dia0 39073 | The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {( I ↾ 𝐵)}) | ||
Theorem | dia1N 39074 | The value of the partial isomorphism A at the fiducial co-atom is the set of all translations i.e. the entire vector space. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = 𝑇) | ||
Theorem | dia1elN 39075 | The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 ∈ ran 𝐼) | ||
Theorem | diaglbN 39076* | Partial isomorphism A of a lattice glb. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) | ||
Theorem | diameetN 39077 | Partial isomorphism A of a lattice meet. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
Theorem | diainN 39078 | Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝑋 ∩ 𝑌) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) | ||
Theorem | diaintclN 39079 | The intersection of partial isomorphism A closed subspaces is a closed subspace. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑆 ∈ ran 𝐼) | ||
Theorem | diasslssN 39080 | The partial isomorphism A maps to subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 ⊆ 𝑆) | ||
Theorem | diassdvaN 39081 | The partial isomorphism A maps to a set of vectors in partial vector space A. (Contributed by NM, 1-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ⊆ 𝑉) | ||
Theorem | dia1dim 39082* | Two expressions for the 1-dimensional subspaces of partial vector space A (when 𝐹 is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)}) | ||
Theorem | dia1dim2 39083 | Two expressions for a 1-dimensional subspace of partial vector space A (when 𝐹 is a nonzero vector i.e. non-identity translation). (Contributed by NM, 15-Jan-2014.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = (𝑁‘{𝐹})) | ||
Theorem | dia1dimid 39084 | A vector (translation) belongs to the 1-dim subspace it generates. (Contributed by NM, 8-Sep-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝐼‘(𝑅‘𝐹))) | ||
Theorem | dia2dimlem1 39085 | Lemma for dia2dim 39098. Show properties of the auxiliary atom 𝑄. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) ⇒ ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | ||
Theorem | dia2dimlem2 39086 | Lemma for dia2dim 39098. Define a translation 𝐺 whose trace is atom 𝑈. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑇) & ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) ⇒ ⊢ (𝜑 → (𝑅‘𝐺) = 𝑈) | ||
Theorem | dia2dimlem3 39087 | Lemma for dia2dim 39098. Define a translation 𝐷 whose trace is atom 𝑉. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑇) & ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → (𝑅‘𝐷) = 𝑉) | ||
Theorem | dia2dimlem4 39088 | Lemma for dia2dim 39098. Show that the composition (sum) of translations (vectors) 𝐺 and 𝐷 equals 𝐹. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → 𝐺 ∈ 𝑇) & ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) & ⊢ (𝜑 → 𝐷 ∈ 𝑇) & ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → (𝐷 ∘ 𝐺) = 𝐹) | ||
Theorem | dia2dimlem5 39089 | Lemma for dia2dim 39098. The sum of vectors 𝐺 and 𝐷 belongs to the sum of the subspaces generated by them. Thus, 𝐹 = (𝐺 ∘ 𝐷) belongs to the subspace sum. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑇) & ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) & ⊢ (𝜑 → 𝐷 ∈ 𝑇) & ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem6 39090 | Lemma for dia2dim 39098. Eliminate auxiliary translations 𝐺 and 𝐷. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem7 39091 | Lemma for dia2dim 39098. Eliminate (𝐹‘𝑃) ≠ 𝑃 condition. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem8 39092 | Lemma for dia2dim 39098. Eliminate no-longer used auxiliary atoms 𝑃 and 𝑄. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem9 39093 | Lemma for dia2dim 39098. Eliminate (𝑅‘𝐹) ≠ 𝑈, 𝑉 conditions. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem10 39094 | Lemma for dia2dim 39098. Convert membership in closed subspace (𝐼‘(𝑈 ∨ 𝑉)) to a lattice ordering. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → 𝐹 ∈ (𝐼‘(𝑈 ∨ 𝑉))) ⇒ ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) | ||
Theorem | dia2dimlem11 39095 | Lemma for dia2dim 39098. Convert ordering hypothesis on 𝑅‘𝐹 to subspace membership 𝐹 ∈ (𝐼‘(𝑈 ∨ 𝑉)). (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝐼‘(𝑈 ∨ 𝑉))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem12 39096 | Lemma for dia2dim 39098. Obtain subset relation. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘(𝑈 ∨ 𝑉)) ⊆ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem13 39097 | Lemma for dia2dim 39098. Eliminate 𝑈 ≠ 𝑉 condition. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑈 ∨ 𝑉)) ⊆ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dim 39098 | A two-dimensional subspace of partial vector space A is closed, or equivalently, the isomorphism of a join of two atoms is a subset of the subspace sum of the isomorphisms of each atom (and thus they are equal, as shown later for the full vector space H). (Contributed by NM, 9-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑈 ∨ 𝑉)) ⊆ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Syntax | cdvh 39099 | Extend class notation with constructed full vector space H. |
class DVecH | ||
Definition | df-dvech 39100* | Define constructed full vector space H. (Contributed by NM, 17-Oct-2013.) |
⊢ DVecH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({〈(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |