![]() |
Metamath
Proof Explorer Theorem List (p. 391 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30438) |
![]() (30439-31961) |
![]() (31962-47939) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | paddasslem8 39001 | Lemma for paddass 39012. (Contributed by NM, 8-Jan-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ ((π₯ β π β§ π¦ β π β§ π§ β π) β§ π β€ (π₯ β¨ π¦) β§ π β€ (π β¨ π§))) β π β ((π + π) + π)) | ||
Theorem | paddasslem9 39002 | Lemma for paddass 39012. Combine paddasslem7 39000 and paddasslem8 39001. (Contributed by NM, 9-Jan-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ ((π₯ β π β§ π¦ β π β§ π§ β π) β§ (Β¬ π β€ (π₯ β¨ π¦) β§ π β€ (π¦ β¨ π§)) β§ (π β π΄ β§ π β€ (π₯ β¨ π¦) β§ π β€ (π β¨ π§)))) β π β ((π + π) + π)) | ||
Theorem | paddasslem10 39003 | Lemma for paddass 39012. Use paddasslem4 38997 to eliminate π from paddasslem9 39002. (Contributed by NM, 9-Jan-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((((πΎ β HL β§ π β π§ β§ π₯ β π¦) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ ((π₯ β π β§ π¦ β π β§ π§ β π) β§ (Β¬ π β€ (π₯ β¨ π¦) β§ π β€ (π₯ β¨ π) β§ π β€ (π¦ β¨ π§)))) β π β ((π + π) + π)) | ||
Theorem | paddasslem11 39004 | Lemma for paddass 39012. The case when π = π§. (Contributed by NM, 11-Jan-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β ((π + π) + π)) | ||
Theorem | paddasslem12 39005 | Lemma for paddass 39012. The case when π₯ = π¦. (Contributed by NM, 11-Jan-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((((πΎ β HL β§ π₯ = π¦) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ ((π¦ β π β§ π§ β π) β§ (π β€ (π₯ β¨ π) β§ π β€ (π¦ β¨ π§)))) β π β ((π + π) + π)) | ||
Theorem | paddasslem13 39006 | Lemma for paddass 39012. The case when π β€ (π₯ β¨ π¦). (Unlike the proof in Maeda and Maeda, we don't need π₯ β π¦.) (Contributed by NM, 11-Jan-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((((πΎ β HL β§ π β π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ ((π₯ β π β§ π¦ β π) β§ (π β€ (π₯ β¨ π¦) β§ π β€ (π₯ β¨ π)))) β π β ((π + π) + π)) | ||
Theorem | paddasslem14 39007 | Lemma for paddass 39012. Remove π β π§, π₯ β π¦, and Β¬ π β€ (π₯ β¨ π¦) from antecedent of paddasslem10 39003, using paddasslem11 39004, paddasslem12 39005, and paddasslem13 39006. (Contributed by NM, 11-Jan-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ ((π₯ β π β§ π¦ β π β§ π§ β π) β§ (π β€ (π₯ β¨ π) β§ π β€ (π¦ β¨ π§)))) β π β ((π + π) + π)) | ||
Theorem | paddasslem15 39008 | Lemma for paddass 39012. Use elpaddn0 38974 to eliminate π¦ and π§ from paddasslem14 39007. (Contributed by NM, 11-Jan-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β β β§ π β β )) β§ (π β π΄ β§ (π₯ β π β§ π β (π + π)) β§ π β€ (π₯ β¨ π))) β π β ((π + π) + π)) | ||
Theorem | paddasslem16 39009 | Lemma for paddass 39012. Use elpaddn0 38974 to eliminate π₯ and π from paddasslem15 39008. (Contributed by NM, 11-Jan-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ ((π β β β§ (π + π) β β ) β§ (π β β β§ π β β ))) β (π + (π + π)) β ((π + π) + π)) | ||
Theorem | paddasslem17 39010 | Lemma for paddass 39012. The case when at least one sum argument is empty. (Contributed by NM, 12-Jan-2012.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ ((π β β β§ (π + π) β β ) β§ (π β β β§ π β β ))) β (π + (π + π)) β ((π + π) + π)) | ||
Theorem | paddasslem18 39011 | Lemma for paddass 39012. Combine paddasslem16 39009 and paddasslem17 39010. (Contributed by NM, 12-Jan-2012.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (π + (π + π)) β ((π + π) + π)) | ||
Theorem | paddass 39012 | Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π + π) + π) = (π + (π + π))) | ||
Theorem | padd12N 39013 | Commutative/associative law for projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (π + (π + π)) = (π + (π + π))) | ||
Theorem | padd4N 39014 | Rearrangement of 4 terms in a projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β ((π + π) + (π + π)) = ((π + π) + (π + π))) | ||
Theorem | paddidm 39015 | Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.) |
β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β π΅ β§ π β π) β (π + π) = π) | ||
Theorem | paddclN 39016 | The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β (π + π) β π) | ||
Theorem | paddssw1 39017 | Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β π΅ β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β π β§ π β π) β (π + π) β (π + π))) | ||
Theorem | paddssw2 39018 | Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β π΅ β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π + π) β π β (π β π β§ π β π))) | ||
Theorem | paddss 39019 | Subset law for projective subspace sum. (unss 4183 analog.) (Contributed by NM, 7-Mar-2012.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β π΅ β§ (π β π΄ β§ π β π΄ β§ π β π)) β ((π β π β§ π β π) β (π + π) β π)) | ||
Theorem | pmodlem1 39020* | Lemma for pmod1i 39022. (Contributed by NM, 9-Mar-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π β§ π β π) β§ (π β π β§ π β π β§ π β€ (π β¨ π))) β π β (π + (π β© π))) | ||
Theorem | pmodlem2 39021 | Lemma for pmod1i 39022. (Contributed by NM, 9-Mar-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π) β§ π β π) β ((π + π) β© π) β (π + (π β© π))) | ||
Theorem | pmod1i 39022 | The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π)) β (π β π β ((π + π) β© π) = (π + (π β© π)))) | ||
Theorem | pmod2iN 39023 | Dual of the modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π΄ β§ π β π΄)) β (π β π β ((π β© π) + π) = (π β© (π + π)))) | ||
Theorem | pmodN 39024 | The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π΄ β§ π β π΄)) β (π β© (π + (π β© π))) = ((π β© π) + (π β© π))) | ||
Theorem | pmodl42N 39025 | Lemma derived from modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β π β§ π β π)) β (((π + π) + π) β© ((π + π) + π)) = ((π + π) + ((π + π) β© (π + π)))) | ||
Theorem | pmapjoin 39026 | The projective map of the join of two lattice elements. Part of Equation 15.5.3 of [MaedaMaeda] p. 63. (Contributed by NM, 27-Jan-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π = (pmapβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β ((πβπ) + (πβπ)) β (πβ(π β¨ π))) | ||
Theorem | pmapjat1 39027 | The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (pmapβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β (πβ(π β¨ π)) = ((πβπ) + (πβπ))) | ||
Theorem | pmapjat2 39028 | The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (pmapβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β (πβ(π β¨ π)) = ((πβπ) + (πβπ))) | ||
Theorem | pmapjlln1 39029 | The projective map of the join of a lattice element and a lattice line (expressed as the join π β¨ π of two atoms). (Contributed by NM, 16-Sep-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (pmapβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π΅ β§ π β π΄ β§ π β π΄)) β (πβ(π β¨ (π β¨ π ))) = ((πβπ) + (πβ(π β¨ π )))) | ||
Theorem | hlmod1i 39030 | A version of the modular law pmod1i 39022 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ πΉ = (pmapβπΎ) & β’ + = (+πβπΎ) β β’ ((πΎ β HL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β€ π β§ (πΉβ(π β¨ π)) = ((πΉβπ) + (πΉβπ))) β ((π β¨ π) β§ π) = (π β¨ (π β§ π)))) | ||
Theorem | atmod1i1 39031 | Version of modular law pmod1i 39022 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΅ β§ π β π΅) β§ π β€ π) β (π β¨ (π β§ π)) = ((π β¨ π) β§ π)) | ||
Theorem | atmod1i1m 39032 | Version of modular law pmod1i 39022 that holds in a Hilbert lattice, when an element meets an atom. (Contributed by NM, 2-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄) β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (π β§ π) β€ π) β ((π β§ π) β¨ (π β§ π)) = (((π β§ π) β¨ π) β§ π)) | ||
Theorem | atmod1i2 39033 | Version of modular law pmod1i 39022 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΅ β§ π β π΅) β§ π β€ π) β (π β¨ (π β§ π)) = ((π β¨ π) β§ π)) | ||
Theorem | llnmod1i2 39034 | Version of modular law pmod1i 39022 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join π β¨ π). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ (π β π΄ β§ π β π΄) β§ π β€ π) β (π β¨ ((π β¨ π) β§ π)) = ((π β¨ (π β¨ π)) β§ π)) | ||
Theorem | atmod2i1 39035 | Version of modular law pmod2iN 39023 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΅ β§ π β π΅) β§ π β€ π) β ((π β§ π) β¨ π) = (π β§ (π β¨ π))) | ||
Theorem | atmod2i2 39036 | Version of modular law pmod2iN 39023 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΅ β§ π β π΅) β§ π β€ π) β ((π β§ π) β¨ π) = (π β§ (π β¨ π))) | ||
Theorem | llnmod2i2 39037 | Version of modular law pmod1i 39022 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join π β¨ π). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ (π β π΄ β§ π β π΄) β§ π β€ π) β ((π β§ (π β¨ π)) β¨ π) = (π β§ ((π β¨ π) β¨ π))) | ||
Theorem | atmod3i1 39038 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΅ β§ π β π΅) β§ π β€ π) β (π β¨ (π β§ π)) = (π β§ (π β¨ π))) | ||
Theorem | atmod3i2 39039 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΅ β§ π β π΅) β§ π β€ π) β (π β¨ (π β§ π)) = (π β§ (π β¨ π))) | ||
Theorem | atmod4i1 39040 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΅ β§ π β π΅) β§ π β€ π) β ((π β§ π) β¨ π) = ((π β¨ π) β§ π)) | ||
Theorem | atmod4i2 39041 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-Mar-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΅ β§ π β π΅) β§ π β€ π) β ((π β§ π) β¨ π) = ((π β¨ π) β§ π)) | ||
Theorem | llnexchb2lem 39042 | Lemma for llnexchb2 39043. (Contributed by NM, 17-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β π΄ β§ π β π΄ β§ Β¬ π β€ π) β§ (π β§ π) β π΄) β ((π β§ π) β€ (π β¨ π) β (π β§ π) = (π β§ (π β¨ π)))) | ||
Theorem | llnexchb2 39043 | Line exchange property (compare cvlatexchb2 38508 for atoms). (Contributed by NM, 17-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β ((π β§ π) β€ π β (π β§ π) = (π β§ π))) | ||
Theorem | llnexch2N 39044 | Line exchange property (compare cvlatexch2 38510 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ ((π β§ π) β π΄ β§ π β π)) β ((π β§ π) β€ π β (π β§ π) β€ π)) | ||
Theorem | dalawlem1 39045 | Lemma for dalaw 39060. Special case of dath2 38911, where πΆ is replaced by ((π β¨ π) β§ (π β¨ π)). The remaining lemmas will eliminate the conditions on the atoms imposed by dath2 38911. (Contributed by NM, 6-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (((π β¨ π) β¨ π ) β π β§ ((π β¨ π) β¨ π) β π) β§ ((Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π ) β§ Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π))) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem2 39046 | Lemma for dalaw 39060. Utility lemma that breaks ((π β¨ π) β§ (π β¨ π)) into a join of two pieces. (Contributed by NM, 6-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β ((π β¨ π) β§ (π β¨ π)) β€ ((((π β¨ π) β¨ π) β§ π) β¨ (((π β¨ π) β¨ π) β§ π))) | ||
Theorem | dalawlem3 39047 | Lemma for dalaw 39060. First piece of dalawlem5 39049. (Contributed by NM, 4-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (((π β¨ π) β¨ π) β§ π) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem4 39048 | Lemma for dalaw 39060. Second piece of dalawlem5 39049. (Contributed by NM, 4-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (((π β¨ π) β¨ π) β§ π) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem5 39049 | Lemma for dalaw 39060. Special case to eliminate the requirement Β¬ (π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) in dalawlem1 39045. (Contributed by NM, 4-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem6 39050 | Lemma for dalaw 39060. First piece of dalawlem8 39052. (Contributed by NM, 6-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π ) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (((π β¨ π) β¨ π) β§ π) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem7 39051 | Lemma for dalaw 39060. Second piece of dalawlem8 39052. (Contributed by NM, 6-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π ) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (((π β¨ π) β¨ π) β§ π) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem8 39052 | Lemma for dalaw 39060. Special case to eliminate the requirement Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π ) in dalawlem1 39045. (Contributed by NM, 6-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π ) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem9 39053 | Lemma for dalaw 39060. Special case to eliminate the requirement Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) in dalawlem1 39045. (Contributed by NM, 6-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem10 39054 | Lemma for dalaw 39060. Combine dalawlem5 39049, dalawlem8 39052, and dalawlem9 . (Contributed by NM, 6-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ Β¬ (Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π ) β§ Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem11 39055 | Lemma for dalaw 39060. First part of dalawlem13 39057. (Contributed by NM, 17-Sep-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β€ (π β¨ π ) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem12 39056 | Lemma for dalaw 39060. Second part of dalawlem13 39057. (Contributed by NM, 17-Sep-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π = π β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem13 39057 | Lemma for dalaw 39060. Special case to eliminate the requirement ((π β¨ π) β¨ π ) β π in dalawlem1 39045. (Contributed by NM, 6-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ Β¬ ((π β¨ π) β¨ π ) β π β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem14 39058 | Lemma for dalaw 39060. Combine dalawlem10 39054 and dalawlem13 39057. (Contributed by NM, 6-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ Β¬ (((π β¨ π) β¨ π ) β π β§ (Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π ) β§ Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π))) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalawlem15 39059 | Lemma for dalaw 39060. Swap variable triples πππ and πππ in dalawlem14 39058, to obtain the elimination of the remaining conditions in dalawlem1 39045. (Contributed by NM, 6-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ Β¬ (((π β¨ π) β¨ π) β π β§ (Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β§ Β¬ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π))) β§ ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π)))) | ||
Theorem | dalaw 39060 | Desargues's law, derived from Desargues's theorem dath 38910 and with no conditions on the atoms. If triples β¨π, π, π β© and β¨π, π, πβ© are centrally perspective, i.e., ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π) β ((π β¨ π) β§ (π β¨ π)) β€ (((π β¨ π ) β§ (π β¨ π)) β¨ ((π β¨ π) β§ (π β¨ π))))) | ||
Syntax | cpclN 39061 | Extend class notation with projective subspace closure. |
class PCl | ||
Definition | df-pclN 39062* | Projective subspace closure, which is the smallest projective subspace containing an arbitrary set of atoms. The subspace closure of the union of a set of projective subspaces is their supremum in PSubSp. Related to an analogous definition of closure used in Lemma 3.1.4 of [PtakPulmannova] p. 68. (Note that this closure is not necessarily one of the closed projective subspaces PSubCl of df-psubclN 39109.) (Contributed by NM, 7-Sep-2013.) |
β’ PCl = (π β V β¦ (π₯ β π« (Atomsβπ) β¦ β© {π¦ β (PSubSpβπ) β£ π₯ β π¦})) | ||
Theorem | pclfvalN 39063* | The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ π = (PClβπΎ) β β’ (πΎ β π β π = (π₯ β π« π΄ β¦ β© {π¦ β π β£ π₯ β π¦})) | ||
Theorem | pclvalN 39064* | Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β π β§ π β π΄) β (πβπ) = β© {π¦ β π β£ π β π¦}) | ||
Theorem | pclclN 39065 | Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β π β§ π β π΄) β (πβπ) β π) | ||
Theorem | elpclN 39066* | Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ π = (PClβπΎ) & β’ π β V β β’ ((πΎ β π β§ π β π΄) β (π β (πβπ) β βπ¦ β π (π β π¦ β π β π¦))) | ||
Theorem | elpcliN 39067 | Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ π = (PClβπΎ) β β’ (((πΎ β π β§ π β π β§ π β π) β§ π β (πβπ)) β π β π) | ||
Theorem | pclssN 39068 | Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β π β§ π β π β§ π β π΄) β (πβπ) β (πβπ)) | ||
Theorem | pclssidN 39069 | A set of atoms is included in its projective subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β π β§ π β π΄) β π β (πβπ)) | ||
Theorem | pclidN 39070 | The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β π β§ π β π) β (πβπ) = π) | ||
Theorem | pclbtwnN 39071 | A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ π = (PClβπΎ) β β’ (((πΎ β π β§ π β π) β§ (π β π β§ π β (πβπ))) β π = (πβπ)) | ||
Theorem | pclunN 39072 | The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β π β§ π β π΄ β§ π β π΄) β (πβ(π βͺ π)) = (πβ(π + π))) | ||
Theorem | pclun2N 39073 | The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β (πβ(π βͺ π)) = (π + π)) | ||
Theorem | pclfinN 39074* | The projective subspace closure of a set equals the union of the closures of its finite subsets. Analogous to Lemma 3.3.6 of [PtakPulmannova] p. 72. Compare the closed subspace version pclfinclN 39124. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β AtLat β§ π β π΄) β (πβπ) = βͺ π¦ β (Fin β© π« π)(πβπ¦)) | ||
Theorem | pclcmpatN 39075* | The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β (πβπ)) β βπ¦ β Fin (π¦ β π β§ π β (πβπ¦))) | ||
Syntax | cpolN 39076 | Extend class notation with polarity of projective subspace $m$. |
class β₯π | ||
Definition | df-polarityN 39077* | Define polarity of projective subspace, which is a kind of complement of the subspace. Item 2 in [Holland95] p. 222 bottom. For more generality, we define it for all subsets of atoms, not just projective subspaces. The intersection with Atomsβπ ensures it is defined when π = β . (Contributed by NM, 23-Oct-2011.) |
β’ β₯π = (π β V β¦ (π β π« (Atomsβπ) β¦ ((Atomsβπ) β© β© π β π ((pmapβπ)β((ocβπ)βπ))))) | ||
Theorem | polfvalN 39078* | The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
β’ β₯ = (ocβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (pmapβπΎ) & β’ π = (β₯πβπΎ) β β’ (πΎ β π΅ β π = (π β π« π΄ β¦ (π΄ β© β© π β π (πβ( β₯ βπ))))) | ||
Theorem | polvalN 39079* | Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
β’ β₯ = (ocβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (pmapβπΎ) & β’ π = (β₯πβπΎ) β β’ ((πΎ β π΅ β§ π β π΄) β (πβπ) = (π΄ β© β© π β π (πβ( β₯ βπ)))) | ||
Theorem | polval2N 39080 | Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.) |
β’ π = (lubβπΎ) & β’ β₯ = (ocβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (pmapβπΎ) & β’ π = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄) β (πβπ) = (πβ( β₯ β(πβπ)))) | ||
Theorem | polsubN 39081 | The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄) β ( β₯ βπ) β π) | ||
Theorem | polssatN 39082 | The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄) β ( β₯ βπ) β π΄) | ||
Theorem | pol0N 39083 | The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ (πΎ β π΅ β ( β₯ ββ ) = π΄) | ||
Theorem | pol1N 39084 | The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ (πΎ β HL β ( β₯ βπ΄) = β ) | ||
Theorem | 2pol0N 39085 | The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
β’ β₯ = (β₯πβπΎ) β β’ (πΎ β HL β ( β₯ β( β₯ ββ )) = β ) | ||
Theorem | polpmapN 39086 | The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ π = (pmapβπΎ) & β’ π = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (πβ(πβπ)) = (πβ( β₯ βπ))) | ||
Theorem | 2polpmapN 39087 | Double polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π = (pmapβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΅) β ( β₯ β( β₯ β(πβπ))) = (πβπ)) | ||
Theorem | 2polvalN 39088 | Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
β’ π = (lubβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (pmapβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄) β ( β₯ β( β₯ βπ)) = (πβ(πβπ))) | ||
Theorem | 2polssN 39089 | A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄) β π β ( β₯ β( β₯ βπ))) | ||
Theorem | 3polN 39090 | Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄) β ( β₯ β( β₯ β( β₯ βπ))) = ( β₯ βπ)) | ||
Theorem | polcon3N 39091 | Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β π) β ( β₯ βπ) β ( β₯ βπ)) | ||
Theorem | 2polcon4bN 39092 | Contraposition law for polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (( β₯ β( β₯ βπ)) β ( β₯ β( β₯ βπ)) β ( β₯ βπ) β ( β₯ βπ))) | ||
Theorem | polcon2N 39093 | Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β ( β₯ βπ)) β π β ( β₯ βπ)) | ||
Theorem | polcon2bN 39094 | Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β ( β₯ βπ) β π β ( β₯ βπ))) | ||
Theorem | pclss2polN 39095 | The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β HL β§ π β π΄) β (πβπ) β ( β₯ β( β₯ βπ))) | ||
Theorem | pcl0N 39096 | The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
β’ π = (PClβπΎ) β β’ (πΎ β HL β (πββ ) = β ) | ||
Theorem | pcl0bN 39097 | The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PClβπΎ) β β’ ((πΎ β HL β§ π β π΄) β ((πβπ) = β β π = β )) | ||
Theorem | pmaplubN 39098 | The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π = (lubβπΎ) & β’ π = (pmapβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (πβ(πβπ)) = π) | ||
Theorem | sspmaplubN 39099 | A set of atoms is a subset of the projective map of its LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
β’ π = (lubβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (pmapβπΎ) β β’ ((πΎ β HL β§ π β π΄) β π β (πβ(πβπ))) | ||
Theorem | 2pmaplubN 39100 | Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
β’ π = (lubβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (pmapβπΎ) β β’ ((πΎ β HL β§ π β π΄) β (πβ(πβ(πβ(πβπ)))) = (πβ(πβπ))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |