Home | Metamath
Proof Explorer Theorem List (p. 391 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | diassdvaN 39001 | The partial isomorphism A maps to a set of vectors in partial vector space A. (Contributed by NM, 1-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ⊆ 𝑉) | ||
Theorem | dia1dim 39002* | Two expressions for the 1-dimensional subspaces of partial vector space A (when 𝐹 is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)}) | ||
Theorem | dia1dim2 39003 | Two expressions for a 1-dimensional subspace of partial vector space A (when 𝐹 is a nonzero vector i.e. non-identity translation). (Contributed by NM, 15-Jan-2014.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = (𝑁‘{𝐹})) | ||
Theorem | dia1dimid 39004 | A vector (translation) belongs to the 1-dim subspace it generates. (Contributed by NM, 8-Sep-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝐼‘(𝑅‘𝐹))) | ||
Theorem | dia2dimlem1 39005 | Lemma for dia2dim 39018. Show properties of the auxiliary atom 𝑄. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) ⇒ ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | ||
Theorem | dia2dimlem2 39006 | Lemma for dia2dim 39018. Define a translation 𝐺 whose trace is atom 𝑈. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑇) & ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) ⇒ ⊢ (𝜑 → (𝑅‘𝐺) = 𝑈) | ||
Theorem | dia2dimlem3 39007 | Lemma for dia2dim 39018. Define a translation 𝐷 whose trace is atom 𝑉. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑇) & ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → (𝑅‘𝐷) = 𝑉) | ||
Theorem | dia2dimlem4 39008 | Lemma for dia2dim 39018. Show that the composition (sum) of translations (vectors) 𝐺 and 𝐷 equals 𝐹. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → 𝐺 ∈ 𝑇) & ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) & ⊢ (𝜑 → 𝐷 ∈ 𝑇) & ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → (𝐷 ∘ 𝐺) = 𝐹) | ||
Theorem | dia2dimlem5 39009 | Lemma for dia2dim 39018. The sum of vectors 𝐺 and 𝐷 belongs to the sum of the subspaces generated by them. Thus, 𝐹 = (𝐺 ∘ 𝐷) belongs to the subspace sum. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑇) & ⊢ (𝜑 → (𝐺‘𝑃) = 𝑄) & ⊢ (𝜑 → 𝐷 ∈ 𝑇) & ⊢ (𝜑 → (𝐷‘𝑄) = (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem6 39010 | Lemma for dia2dim 39018. Eliminate auxiliary translations 𝐺 and 𝐷. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem7 39011 | Lemma for dia2dim 39018. Eliminate (𝐹‘𝑃) ≠ 𝑃 condition. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem8 39012 | Lemma for dia2dim 39018. Eliminate no-longer used auxiliary atoms 𝑃 and 𝑄. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) & ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem9 39013 | Lemma for dia2dim 39018. Eliminate (𝑅‘𝐹) ≠ 𝑈, 𝑉 conditions. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem10 39014 | Lemma for dia2dim 39018. Convert membership in closed subspace (𝐼‘(𝑈 ∨ 𝑉)) to a lattice ordering. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → 𝐹 ∈ (𝐼‘(𝑈 ∨ 𝑉))) ⇒ ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) | ||
Theorem | dia2dimlem11 39015 | Lemma for dia2dim 39018. Convert ordering hypothesis on 𝑅‘𝐹 to subspace membership 𝐹 ∈ (𝐼‘(𝑈 ∨ 𝑉)). (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝐹 ∈ 𝑇) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝐼‘(𝑈 ∨ 𝑉))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem12 39016 | Lemma for dia2dim 39018. Obtain subset relation. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘(𝑈 ∨ 𝑉)) ⊆ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dimlem13 39017 | Lemma for dia2dim 39018. Eliminate 𝑈 ≠ 𝑉 condition. (Contributed by NM, 8-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑌) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝑁 = (LSpan‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑈 ∨ 𝑉)) ⊆ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Theorem | dia2dim 39018 | A two-dimensional subspace of partial vector space A is closed, or equivalently, the isomorphism of a join of two atoms is a subset of the subspace sum of the isomorphisms of each atom (and thus they are equal, as shown later for the full vector space H). (Contributed by NM, 9-Sep-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑌) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) & ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑈 ∨ 𝑉)) ⊆ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) | ||
Syntax | cdvh 39019 | Extend class notation with constructed full vector space H. |
class DVecH | ||
Definition | df-dvech 39020* | Define constructed full vector space H. (Contributed by NM, 17-Oct-2013.) |
⊢ DVecH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({〈(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) | ||
Theorem | dvhfset 39021* | The constructed full vector space H for a lattice 𝐾. (Contributed by NM, 17-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (DVecH‘𝐾) = (𝑤 ∈ 𝐻 ↦ ({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) | ||
Theorem | dvhset 39022* | The constructed full vector space H for a lattice 𝐾. (Contributed by NM, 17-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑈 = ({〈(Base‘ndx), (𝑇 × 𝐸)〉, 〈(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) | ||
Theorem | dvhsca 39023 | The ring of scalars of the constructed full vector space H. (Contributed by NM, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐹 = 𝐷) | ||
Theorem | dvhbase 39024 | The ring base set of the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝐶 = (Base‘𝐹) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐶 = 𝐸) | ||
Theorem | dvhfplusr 39025* | Ring addition operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) & ⊢ ✚ = (+g‘𝐹) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ✚ = + ) | ||
Theorem | dvhfmulr 39026* | Ring multiplication operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ · = (.r‘𝐹) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))) | ||
Theorem | dvhmulr 39027 | Ring multiplication operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ · = (.r‘𝐹) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 · 𝑆) = (𝑅 ∘ 𝑆)) | ||
Theorem | dvhvbase 39028 | The vectors (vector base set) of the constructed full vector space H are all translations (for a fiducial co-atom 𝑊). (Contributed by NM, 2-Nov-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑉 = (𝑇 × 𝐸)) | ||
Theorem | dvhelvbasei 39029 | Vector membership in the constructed full vector space H. (Contributed by NM, 20-Feb-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸)) → 〈𝐹, 𝑆〉 ∈ 𝑉) | ||
Theorem | dvhvaddcbv 39030* | Change bound variables to isolate them later. (Contributed by NM, 3-Nov-2013.) |
⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) ⇒ ⊢ + = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) | ||
Theorem | dvhvaddval 39031* | The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) |
⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) ⇒ ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) | ||
Theorem | dvhfvadd 39032* | The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ ✚ = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) & ⊢ + = (+g‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → + = ✚ ) | ||
Theorem | dvhvadd 39033 | The vector sum operation for the constructed full vector space H. (Contributed by NM, 11-Feb-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ ⨣ = (+g‘𝐷) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) | ||
Theorem | dvhopvadd 39034 | The vector sum operation for the constructed full vector space H. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ ⨣ = (+g‘𝐷) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 + 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 ⨣ 𝑅)〉) | ||
Theorem | dvhopvadd2 39035* | The vector sum operation for the constructed full vector space H. TODO: check if this will shorten proofs that use dvhopvadd 39034 and/or dvhfplusr 39025. (Contributed by NM, 26-Sep-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 ✚ 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 + 𝑅)〉) | ||
Theorem | dvhvaddcl 39036 | Closure of the vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸)) | ||
Theorem | dvhvaddcomN 39037 | Commutativity of vector sum. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) | ||
Theorem | dvhvaddass 39038 | Associativity of vector sum. (Contributed by NM, 31-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼))) | ||
Theorem | dvhvscacbv 39039* | Change bound variables to isolate them later. (Contributed by NM, 20-Nov-2013.) |
⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) ⇒ ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) | ||
Theorem | dvhvscaval 39040* | The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013.) |
⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) ⇒ ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) | ||
Theorem | dvhfvsca 39041* | Scalar product operation for the constructed full vector space H. (Contributed by NM, 2-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)) | ||
Theorem | dvhvsca 39042 | Scalar product operation for the constructed full vector space H. (Contributed by NM, 2-Nov-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝑅 · 𝐹) = 〈(𝑅‘(1st ‘𝐹)), (𝑅 ∘ (2nd ‘𝐹))〉) | ||
Theorem | dvhopvsca 39043 | Scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Feb-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) | ||
Theorem | dvhvscacl 39044 | Closure of the scalar product operation for the constructed full vector space H. (Contributed by NM, 12-Feb-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝑅 · 𝐹) ∈ (𝑇 × 𝐸)) | ||
Theorem | tendoinvcl 39045* | Closure of multiplicative inverse for endomorphism. We use the scalar inverse of the vector space since it is much simpler than the direct inverse of cdleml8 38924. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝑁 = (invr‘𝐹) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∈ 𝐸 ∧ (𝑁‘𝑆) ≠ 𝑂)) | ||
Theorem | tendolinv 39046* | Left multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝑁 = (invr‘𝐹) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∘ 𝑆) = ( I ↾ 𝑇)) | ||
Theorem | tendorinv 39047* | Right multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝑁 = (invr‘𝐹) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑆 ∘ (𝑁‘𝑆)) = ( I ↾ 𝑇)) | ||
Theorem | dvhgrp 39048 | The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a group. (Contributed by NM, 19-Oct-2013.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐼 = (invg‘𝐷) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ Grp) | ||
Theorem | dvhlveclem 39049 | Lemma for dvhlvec 39050. TODO: proof substituting inner part first shorter/longer than substituting outer part first? TODO: break up into smaller lemmas? TODO: does 𝜑 → method shorten proof? (Contributed by NM, 22-Oct-2013.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐼 = (invg‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LVec) | ||
Theorem | dvhlvec 39050 | The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a left module. (Contributed by NM, 23-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑈 ∈ LVec) | ||
Theorem | dvhlmod 39051 | The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a left module. (Contributed by NM, 23-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑈 ∈ LMod) | ||
Theorem | dvh0g 39052* | The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) | ||
Theorem | dvheveccl 39053 | Properties of a unit vector that we will use later as a convenient reference vector. This vector is called "e" in the remark after Lemma M of [Crawley] p. 121. line 17. See also dvhopN 39057 and dihpN 39277. (Contributed by NM, 27-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐸 = 〈( I ↾ 𝐵), ( I ↾ 𝑇)〉 & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ { 0 })) | ||
Theorem | dvhopclN 39054 | Closure of a DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → 〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸)) | ||
Theorem | dvhopaddN 39055* | Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) ⇒ ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) | ||
Theorem | dvhopspN 39056* | Scalar product of DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) ⇒ ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆〈𝐹, 𝑈〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑈)〉) | ||
Theorem | dvhopN 39057* | Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by 〈( I ↾ 𝐵), ( I ↾ 𝑇)〉, 𝑈, 〈𝐹, 𝑂〉. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 〈𝐹, 𝑂〉 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) & ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) & ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) & ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) | ||
Theorem | dvhopellsm 39058* | Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (〈𝐹, 𝑇〉 ∈ (𝑋 ⊕ 𝑌) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ 𝑋 ∧ 〈𝑧, 𝑤〉 ∈ 𝑌) ∧ 〈𝐹, 𝑇〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) | ||
Theorem | cdlemm10N 39059* | The image of the map 𝐺 is the entire one-dimensional subspace (𝐼‘𝑉). Remark after Lemma M of [Crawley] p. 121 line 23. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐶 = {𝑟 ∈ 𝐴 ∣ (𝑟 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑟 ≤ 𝑊)} & ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑠) & ⊢ 𝐺 = (𝑞 ∈ 𝐶 ↦ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑞)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ran 𝐺 = (𝐼‘𝑉)) | ||
Syntax | cocaN 39060 | Extend class notation with subspace orthocomplement for DVecA partial vector space. |
class ocA | ||
Definition | df-docaN 39061* | Define subspace orthocomplement for DVecA partial vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 6-Dec-2013.) |
⊢ ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))) | ||
Theorem | docaffvalN 39062* | Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (ocA‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))))) | ||
Theorem | docafvalN 39063* | Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))) | ||
Theorem | docavalN 39064* | Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (𝑁‘𝑋) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) | ||
Theorem | docaclN 39065 | Closure of subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ( ⊥ ‘𝑋) ∈ ran 𝐼) | ||
Theorem | diaocN 39066 | Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom 𝑊). (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) | ||
Theorem | doca2N 39067 | Double orthocomplement of partial isomorphism A. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘( ⊥ ‘(𝐼‘𝑋))) = (𝐼‘𝑋)) | ||
Theorem | doca3N 39068 | Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | ||
Theorem | dvadiaN 39069 | Any closed subspace is a member of the range of partial isomorphism A, showing the isomorphism maps onto the set of closed subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → 𝑋 ∈ ran 𝐼) | ||
Theorem | diarnN 39070* | Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) | ||
Theorem | diaf1oN 39071* | The partial isomorphism A for a lattice 𝐾 is a one-to-one, onto function. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. See diadm 38976 for the domain. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) | ||
Syntax | cdjaN 39072 | Extend class notation with subspace join for DVecA partial vector space. |
class vA | ||
Definition | df-djaN 39073* | Define (closed) subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) |
⊢ vA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)))))) | ||
Theorem | djaffvalN 39074* | Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (vA‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))) | ||
Theorem | djafvalN 39075* | Subspace join for DVecA partial vector space. TODO: take out hypothesis .i, no longer used. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ⊥ ‘(( ⊥ ‘𝑥) ∩ ( ⊥ ‘𝑦))))) | ||
Theorem | djavalN 39076 | Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (𝑋𝐽𝑌) = ( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌)))) | ||
Theorem | djaclN 39077 | Closure of subspace join for DVecA partial vector space. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (𝑋𝐽𝑌) ∈ ran 𝐼) | ||
Theorem | djajN 39078 | Transfer lattice join to DVecA partial vector space closed subspace join. Part of Lemma M of [Crawley] p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) | ||
Syntax | cdib 39079 | Extend class notation with isomorphism B. |
class DIsoB | ||
Definition | df-dib 39080* | Isomorphism B is isomorphism A extended with an extra dimension set to the zero vector component i.e. the zero endormorphism. Its domain is lattice elements less than or equal to the fiducial co-atom 𝑤. (Contributed by NM, 8-Dec-2013.) |
⊢ DIsoB = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})))) | ||
Theorem | dibffval 39081* | The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (DIsoB‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))) | ||
Theorem | dibfval 39082* | The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) | ||
Theorem | dibval 39083* | The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) | ||
Theorem | dibopelvalN 39084* | Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) | ||
Theorem | dibval2 39085* | Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) | ||
Theorem | dibopelval2 39086* | Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) | ||
Theorem | dibval3N 39087* | Value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ({𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} × { 0 })) | ||
Theorem | dibelval3 39088* | Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑋) ↔ ∃𝑓 ∈ 𝑇 (𝑌 = 〈𝑓, 0 〉 ∧ (𝑅‘𝑓) ≤ 𝑋))) | ||
Theorem | dibopelval3 39089* | Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 0 ))) | ||
Theorem | dibelval1st 39090 | Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (1st ‘𝑌) ∈ (𝐽‘𝑋)) | ||
Theorem | dibelval1st1 39091 | Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (1st ‘𝑌) ∈ 𝑇) | ||
Theorem | dibelval1st2N 39092 | Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) | ||
Theorem | dibelval2nd 39093* | Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (2nd ‘𝑌) = 0 ) | ||
Theorem | dibn0 39094 | The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) | ||
Theorem | dibfna 39095 | Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐽) | ||
Theorem | dibdiadm 39096 | Domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = dom 𝐽) | ||
Theorem | dibfnN 39097* | Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) | ||
Theorem | dibdmN 39098* | Domain of the partial isomorphism A. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) | ||
Theorem | dibeldmN 39099 | Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) | ||
Theorem | dibord 39100 | The isomorphism B for a lattice 𝐾 is order-preserving in the region under co-atom 𝑊. (Contributed by NM, 24-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |