![]() |
Metamath
Proof Explorer Theorem List (p. 391 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28361) |
![]() (28362-29886) |
![]() (29887-43649) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frege122d 39001 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 is the successor of 𝑋, then 𝐴 and 𝐵 are the same (or 𝐵 follows 𝐴 in the transitive closure of 𝐹). Similar to Proposition 122 of [Frege1879] p. 79. Compare with frege122 39227. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝐵 = (𝐹‘𝑋)) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege124d 39002 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 39229. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege126d 39003 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 126 of [Frege1879] p. 81. Compare with frege126 39231. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) | ||
Theorem | frege129d 39004 | If 𝐹 is a function and (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹, the successor of 𝐴 is either 𝐵 or it follows 𝐵 or it comes before 𝐵 in the transitive closure of 𝐹. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 39234. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐶 = (𝐹‘𝐴)) & ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐵(t+‘𝐹)𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶(t+‘𝐹)𝐵)) | ||
Theorem | frege131d 39005 | If 𝐹 is a function and 𝐴 contains all elements of 𝑈 and all elements before or after those elements of 𝑈 in the transitive closure of 𝐹, then the image under 𝐹 of 𝐴 is a subclass of 𝐴. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 39236. (Contributed by RP, 17-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐴) | ||
Theorem | frege133d 39006 | If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 39238. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) | ||
In 1879, Frege introduced notation for documenting formal reasoning about propositions (and classes) which covered elements of propositional logic, predicate calculus and reasoning about relations. However, due to the pitfalls of naive set theory, adapting this work for inclusion in set.mm required dividing statements about propositions from those about classes and identifying when a restriction to sets is required. For an overview comparing the details of Frege's two-dimensional notation and that used in set.mm, see mmfrege.html. See ru 3650 for discussion of an example of a class that is not a set. Numbered propositions from [Frege1879]. ax-frege1 39032, ax-frege2 39033, ax-frege8 39051, ax-frege28 39072, ax-frege31 39076, ax-frege41 39087, frege52 (see ax-frege52a 39099, frege52b 39131, and ax-frege52c 39130 for translations), frege54 (see ax-frege54a 39104, frege54b 39135 and ax-frege54c 39134 for translations) and frege58 (see ax-frege58a 39117, ax-frege58b 39143 and frege58c 39163 for translations) are considered "core" or axioms. However, at least ax-frege8 39051 can be derived from ax-frege1 39032 and ax-frege2 39033, see axfrege8 39049. Frege introduced implication, negation and the universal quantifier as primitives and did not in the numbered propositions use other logical connectives other than equivalence introduced in ax-frege52a 39099, frege52b 39131, and ax-frege52c 39130. In dffrege69 39174, Frege introduced 𝑅 hereditary 𝐴 to say that relation 𝑅, when restricted to operate on elements of class 𝐴, will only have elements of class 𝐴 in its domain; see df-he 39015 for a definition in terms of image and subset. In dffrege76 39181, Frege introduced notation for the concept of two sets related by the transitive closure of a relation, for which we write 𝑋(t+‘𝑅)𝑌, which requires 𝑅 to also be a set. In dffrege99 39204, Frege introduced notation for the concept of two sets either identical or related by the transitive closure of a relation, for which we write 𝑋((t+‘𝑅) ∪ I )𝑌, which is a superclass of sets related by the reflexive-transitive relation 𝑋(t*‘𝑅)𝑌. Finally, in dffrege115 39220, Frege introduced notation for the concept of a relation having the property elements in its domain pair up with only one element each in its range, for which we write Fun ◡◡𝑅 (to ignore any non-relational content of the class 𝑅). Frege did this without the expressing concept of a relation (or its transitive closure) as a class, and needed to invent conventions for discussing indeterminate propositions with two slots free and how to recognize which of the slots was domain and which was range. See mmfrege.html for details. English translations for specific propositions lifted in part from a translation by Stefan Bauer-Mengelberg as reprinted in From Frege to Goedel: A Source Book in Mathematical Logic, 1879-1931. An attempt to align these propositions in the larger set.mm database has also been made. See frege77d 38987 for an example. | ||
Section 2 introduces the turnstile ⊢ which turns an idea which may be true 𝜑 into an assertion that it does hold true ⊢ 𝜑. Section 5 introduces implication, (𝜑 → 𝜓). Section 6 introduces the single rule of interference relied upon, modus ponens ax-mp 5. Section 7 introduces negation and with in synonyms for or (¬ 𝜑 → 𝜓), and ¬ (𝜑 → ¬ 𝜓), and two for exclusive-or corresponding to df-or 837, df-an 387, dfxor4 39007, dfxor5 39008. Section 8 introduces the problematic notation for identity of conceptual content which must be separated into cases for biimplication (𝜑 ↔ 𝜓) or class equality 𝐴 = 𝐵 in this adaptation. Section 10 introduces "truth functions" for one or two variables in equally troubling notation, as the arguments may be understood to be logical predicates or collections. Here f(𝜑) is interpreted to mean if-(𝜑, 𝜓, 𝜒) where the content of the "function" is specified by the latter two argments or logical equivalent, while g(𝐴) is read as 𝐴 ∈ 𝐺 and h(𝐴, 𝐵) as 𝐴𝐻𝐵. This necessarily introduces a need for set theory as both 𝐴 ∈ 𝐺 and 𝐴𝐻𝐵 cannot hold unless 𝐴 is a set. (Also 𝐵.) Section 11 introduces notation for generality, but there is no standard notation for generality when the variable is a proposition because it was realized after Frege that the universe of all possible propositions includes paradoxical constructions leading to the failure of naive set theory. So adopting f(𝜑) as if-(𝜑, 𝜓, 𝜒) would result in the translation of ∀𝜑 f (𝜑) as (𝜓 ∧ 𝜒). For collections, we must generalize over set variables or run into the same problems; this leads to ∀𝐴 g(𝐴) being translated as ∀𝑎𝑎 ∈ 𝐺 and so forth. Under this interpreation the text of section 11 gives us sp 2166 (or simpl 476 and simpr 479 and anifp 1054 in the propositional case) and statements similar to cbvalivw 2053, ax-gen 1839, alrimiv 1970, and alrimdv 1972. These last four introduce a generality and have no useful definition in terms of propositional variables. Section 12 introduces some combinations of primitive symbols and their human language counterparts. Using class notation, these can also be expressed without dummy variables. All are A, ∀𝑥𝑥 ∈ 𝐴, ¬ ∃𝑥¬ 𝑥 ∈ 𝐴 alex 1869, 𝐴 = V eqv 3404; Some are not B, ¬ ∀𝑥𝑥 ∈ 𝐵, ∃𝑥¬ 𝑥 ∈ 𝐵 exnal 1870, 𝐵 ⊊ V pssv 4240, 𝐵 ≠ V nev 39011; There are no C, ∀𝑥¬ 𝑥 ∈ 𝐶, ¬ ∃𝑥𝑥 ∈ 𝐶 alnex 1825, 𝐶 = ∅ eq0 4156; There exist D, ¬ ∀𝑥¬ 𝑥 ∈ 𝐷, ∃𝑥𝑥 ∈ 𝐷 df-ex 1824, ∅ ⊊ 𝐷 0pss 4238, 𝐷 ≠ ∅ n0 4158. Notation for relations between expressions also can be written in various ways. All E are P, ∀𝑥(𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑃), ¬ ∃𝑥(𝑥 ∈ 𝐸 ∧ ¬ 𝑥 ∈ 𝑃) dfss6 3810, 𝐸 = (𝐸 ∩ 𝑃) df-ss 3805, 𝐸 ⊆ 𝑃 dfss2 3808; No F are P, ∀𝑥(𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝑃), ¬ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝑃) alinexa 1888, (𝐹 ∩ 𝑃) = ∅ disj1 4243; Some G are not P, ¬ ∀𝑥(𝑥 ∈ 𝐺 → 𝑥 ∈ 𝑃), ∃𝑥(𝑥 ∈ 𝐺 ∧ ¬ 𝑥 ∈ 𝑃) exanali 1904, (𝐺 ∩ 𝑃) ⊊ 𝐺 nssinpss 4082, ¬ 𝐺 ⊆ 𝑃 nss 3881; Some H are P, ¬ ∀𝑥(𝑥 ∈ 𝐻 → ¬ 𝑥 ∈ 𝑃), ∃𝑥(𝑥 ∈ 𝐻 ∧ 𝑥 ∈ 𝑃) bj-exnalimn 33203, ∅ ⊊ (𝐻 ∩ 𝑃) 0pssin 39012, (𝐻 ∩ 𝑃) ≠ ∅ ndisj 4175. | ||
Theorem | dfxor4 39007 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((¬ 𝜑 → 𝜓) → ¬ (𝜑 → ¬ 𝜓))) | ||
Theorem | dfxor5 39008 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((𝜑 → ¬ 𝜓) → ¬ (¬ 𝜑 → 𝜓))) | ||
Theorem | df3or2 39009 | Express triple-or in terms of implication and negation. Statement in [Frege1879] p. 11. (Contributed by RP, 25-Jul-2020.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓 → 𝜒))) | ||
Theorem | df3an2 39010 | Express triple-and in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 25-Jul-2020.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) | ||
Theorem | nev 39011* | Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) | ||
Theorem | 0pssin 39012* | Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
The statement 𝑅 hereditary 𝐴 means relation 𝑅 is hereditary (in the sense of Frege) in the class 𝐴 or (𝑅 “ 𝐴) ⊆ 𝐴. The former is only a slight reduction in the number of symbols, but this reduces the number of floating hypotheses needed to be checked. As Frege was not using the language of classes or sets, this naturally differs from the set-theoretic notion that a set is hereditary in a property: that all of its elements have a property and all of their elements have the property and so-on. | ||
Theorem | rp-imass 39013 | If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by Richard Penner, 24-Dec-2019.) |
⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) | ||
Syntax | whe 39014 | The property of relation 𝑅 being hereditary in class 𝐴. |
wff 𝑅 hereditary 𝐴 | ||
Definition | df-he 39015 | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | ||
Theorem | dfhe2 39016 | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐴)) | ||
Theorem | dfhe3 39017* | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 hereditary 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴))) | ||
Theorem | heeq12 39018 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) | ||
Theorem | heeq1 39019 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 = 𝑆 → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐴)) | ||
Theorem | heeq2 39020 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝐴 = 𝐵 → (𝑅 hereditary 𝐴 ↔ 𝑅 hereditary 𝐵)) | ||
Theorem | sbcheg 39021 | Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | hess 39022 | Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑆 ⊆ 𝑅 → (𝑅 hereditary 𝐴 → 𝑆 hereditary 𝐴)) | ||
Theorem | xphe 39023 | Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (𝐴 × 𝐵) hereditary 𝐵 | ||
Theorem | 0he 39024 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) |
⊢ ∅ hereditary 𝐴 | ||
Theorem | 0heALT 39025 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ∅ hereditary 𝐴 | ||
Theorem | he0 39026 | Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.) |
⊢ 𝐴 hereditary ∅ | ||
Theorem | unhe1 39027 | The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.) |
⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → (𝑅 ∪ 𝑆) hereditary 𝐴) | ||
Theorem | snhesn 39028 | Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.) |
⊢ {〈𝐴, 𝐴〉} hereditary {𝐵} | ||
Theorem | idhe 39029 | The identity relation is hereditary in any class. (Contributed by RP, 28-Mar-2020.) |
⊢ I hereditary 𝐴 | ||
Theorem | psshepw 39030 | The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
⊢ ◡ [⊊] hereditary 𝒫 𝐴 | ||
Theorem | sshepw 39031 | The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 | ||
Axiom | ax-frege1 39032 | The case in which 𝜑 is denied, 𝜓 is affirmed, and 𝜑 is affirmed is excluded. This is evident since 𝜑 cannot at the same time be denied and affirmed. Axiom 1 of [Frege1879] p. 26. Identical to ax-1 6. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜑)) | ||
Axiom | ax-frege2 39033 | If a proposition 𝜒 is a necessary consequence of two propositions 𝜓 and 𝜑 and one of those, 𝜓, is in turn a necessary consequence of the other, 𝜑, then the proposition 𝜒 is a necessary consequence of the latter one, 𝜑, alone. Axiom 2 of [Frege1879] p. 26. Identical to ax-2 7. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
Theorem | rp-simp2-frege 39034 | Simplification of triple conjunction. Compare with simp2 1128. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜓))) | ||
Theorem | rp-simp2 39035 | Simplification of triple conjunction. Identical to simp2 1128. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | ||
Theorem | rp-frege3g 39036 |
Add antecedent to ax-frege2 39033. More general statement than frege3 39037.
Like ax-frege2 39033, it is essentially a closed form of mpd 15,
however it
has an extra antecedent.
It would be more natural to prove from a1i 11 and ax-frege2 39033 in Metamath. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → ((𝜓 → (𝜒 → 𝜃)) → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | ||
Theorem | frege3 39037 | Add antecedent to ax-frege2 39033. Special case of rp-frege3g 39036. Proposition 3 of [Frege1879] p. 29. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜑 → 𝜓)) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | ||
Theorem | rp-misc1-frege 39038 | Double-use of ax-frege2 39033. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜓)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
Theorem | rp-frege24 39039 | Introducing an embedded antecedent. Alternate proof for frege24 39057. Closed form for a1d 25. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜒 → 𝜓))) | ||
Theorem | rp-frege4g 39040 | Deduction related to distribution. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | ||
Theorem | frege4 39041 | Special case of closed form of a2d 29. Special case of rp-frege4g 39040. Proposition 4 of [Frege1879] p. 31. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) → ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | ||
Theorem | frege5 39042 | A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) | ||
Theorem | rp-7frege 39043 | Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜃 → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) | ||
Theorem | rp-4frege 39044 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒)) | ||
Theorem | rp-6frege 39045 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → ((𝜓 → ((𝜒 → 𝜓) → 𝜃)) → (𝜓 → 𝜃))) | ||
Theorem | rp-8frege 39046 | Eliminate antecedent when it is implied by previous antecedent. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → ((𝜒 → 𝜓) → 𝜃))) → (𝜑 → (𝜓 → 𝜃))) | ||
Theorem | rp-frege25 39047 | Closed form for a1dd 50. Alternate route to Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | frege6 39048 | A closed form of imim2d 57 which is a deduction adding nested antecedents. Proposition 6 of [Frege1879] p. 33. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒)))) | ||
Theorem | axfrege8 39049 |
Swap antecedents. Identical to pm2.04 90. This demonstrates that Axiom 8
of [Frege1879] p. 35 is redundant.
Proof follows closely proof of pm2.04 90 in http://us.metamath.org/mmsolitaire/pmproofs.txt, but in the style of Frege's 1879 work. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | ||
Theorem | frege7 39050 | A closed form of syl6 35. The first antecedent is used to replace the consequent of the second antecedent. Proposition 7 of [Frege1879] p. 34. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜃 → 𝜑)) → (𝜒 → (𝜃 → 𝜓)))) | ||
Axiom | ax-frege8 39051 | Swap antecedents. If two conditions have a proposition as a consequence, their order is immaterial. Third axiom of Frege's 1879 work but identical to pm2.04 90 which can be proved from only ax-mp 5, ax-frege1 39032, and ax-frege2 39033. (Redundant) Axiom 8 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | ||
Theorem | frege26 39052 | Identical to idd 24. Proposition 26 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜓)) | ||
Theorem | frege27 39053 | We cannot (at the same time) affirm 𝜑 and deny 𝜑. Identical to id 22. Proposition 27 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝜑) | ||
Theorem | frege9 39054 | Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 39042 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||
Theorem | frege12 39055 | A closed form of com23 86. Proposition 12 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → (𝜒 → (𝜓 → 𝜃)))) | ||
Theorem | frege11 39056 | Elimination of a nested antecedent as a partial converse of ja 175. If the proposition that 𝜓 takes place or 𝜑 does not is a sufficient condition for 𝜒, then 𝜓 by itself is a sufficient condition for 𝜒. Identical to jarr 106. Proposition 11 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜒)) | ||
Theorem | frege24 39057 | Closed form for a1d 25. Deduction introducing an embedded antecedent. Identical to rp-frege24 39039 which was proved without relying on ax-frege8 39051. Proposition 24 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜒 → 𝜓))) | ||
Theorem | frege16 39058 | A closed form of com34 91. Proposition 16 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏))))) | ||
Theorem | frege25 39059 | Closed form for a1dd 50. Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | frege18 39060 | Closed form of a syllogism followed by a swap of antecedents. Proposition 18 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜑) → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | frege22 39061 | A closed form of com45 97. Proposition 22 of [Frege1879] p. 41. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) → (𝜑 → (𝜓 → (𝜒 → (𝜏 → (𝜃 → 𝜂)))))) | ||
Theorem | frege10 39062 | Result commuting antecedents within an antecedent. Proposition 10 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → (𝜓 → 𝜒)) → 𝜃) → ((𝜓 → (𝜑 → 𝜒)) → 𝜃)) | ||
Theorem | frege17 39063 | A closed form of com3l 89. Proposition 17 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜓 → (𝜒 → (𝜑 → 𝜃)))) | ||
Theorem | frege13 39064 | A closed form of com3r 87. Proposition 13 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜒 → (𝜑 → (𝜓 → 𝜃)))) | ||
Theorem | frege14 39065 | Closed form of a deduction based on com3r 87. Proposition 14 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜃 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | frege19 39066 | A closed form of syl6 35. Proposition 19 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜒 → 𝜃) → (𝜑 → (𝜓 → 𝜃)))) | ||
Theorem | frege23 39067 | Syllogism followed by rotation of three antecedents. Proposition 23 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜏 → 𝜑) → (𝜓 → (𝜒 → (𝜏 → 𝜃))))) | ||
Theorem | frege15 39068 | A closed form of com4r 94. Proposition 15 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | frege21 39069 | Replace antecedent in antecedent. Proposition 21 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒))) | ||
Theorem | frege20 39070 | A closed form of syl8 76. Proposition 20 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜃 → 𝜏) → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | axfrege28 39071 | Contraposition. Identical to con3 151. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Axiom | ax-frege28 39072 | Contraposition. Identical to con3 151. Theorem *2.16 of [WhiteheadRussell] p. 103. Axiom 28 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Theorem | frege29 39073 | Closed form of con3d 150. Proposition 29 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓))) | ||
Theorem | frege30 39074 | Commuted, closed form of con3d 150. Proposition 30 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑))) | ||
Theorem | axfrege31 39075 | Identical to notnotr 128. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) |
⊢ (¬ ¬ 𝜑 → 𝜑) | ||
Axiom | ax-frege31 39076 | 𝜑 cannot be denied and (at the same time ) ¬ ¬ 𝜑 affirmed. Duplex negatio affirmat. The denial of the denial is affirmation. Identical to notnotr 128. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (¬ ¬ 𝜑 → 𝜑) | ||
Theorem | frege32 39077 | Deduce con1 146 from con3 151. Proposition 32 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||
Theorem | frege33 39078 | If 𝜑 or 𝜓 takes place, then 𝜓 or 𝜑 takes place. Identical to con1 146. Proposition 33 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) | ||
Theorem | frege34 39079 | If as a conseqence of the occurence of the circumstance 𝜑, when the obstacle 𝜓 is removed, 𝜒 takes place, then from the circumstance that 𝜒 does not take place while 𝜑 occurs the occurence of the obstacle 𝜓 can be inferred. Closed form of con1d 142. Proposition 34 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → 𝜓))) | ||
Theorem | frege35 39080 | Commuted, closed form of con1d 142. Proposition 35 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (¬ 𝜒 → (𝜑 → 𝜓))) | ||
Theorem | frege36 39081 | The case in which 𝜓 is denied, ¬ 𝜑 is affirmed, and 𝜑 is affirmed does not occur. If 𝜑 occurs, then (at least) one of the two, 𝜑 or 𝜓, takes place (no matter what 𝜓 might be). Identical to pm2.24 122. Proposition 36 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | ||
Theorem | frege37 39082 | If 𝜒 is a necessary consequence of the occurrence of 𝜓 or 𝜑, then 𝜒 is a necessary consequence of 𝜑 alone. Similar to a closed form of orcs 864. Proposition 37 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → 𝜒) → (𝜑 → 𝜒)) | ||
Theorem | frege38 39083 | Identical to pm2.21 121. Proposition 38 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | ||
Theorem | frege39 39084 | Syllogism between pm2.18 125 and pm2.24 122. Proposition 39 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) → (¬ 𝜑 → 𝜓)) | ||
Theorem | frege40 39085 | Anything implies pm2.18 125. Proposition 40 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (¬ 𝜑 → ((¬ 𝜓 → 𝜓) → 𝜓)) | ||
Theorem | axfrege41 39086 | Identical to notnot 139. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → ¬ ¬ 𝜑) | ||
Axiom | ax-frege41 39087 | The affirmation of 𝜑 denies the denial of 𝜑. Identical to notnot 139. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 → ¬ ¬ 𝜑) | ||
Theorem | frege42 39088 | Not not id 22. Proposition 42 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ¬ ¬ (𝜑 → 𝜑) | ||
Theorem | frege43 39089 | If there is a choice only between 𝜑 and 𝜑, then 𝜑 takes place. Identical to pm2.18 125. Proposition 43 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | ||
Theorem | frege44 39090 | Similar to a commuted pm2.62 886. Proposition 44 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) | ||
Theorem | frege45 39091 | Deduce pm2.6 183 from con1 146. Proposition 45 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) | ||
Theorem | frege46 39092 | If 𝜓 holds when 𝜑 occurs as well as when 𝜑 does not occur, then 𝜓 holds. If 𝜓 or 𝜑 occurs and if the occurences of 𝜑 has 𝜓 as a necessary consequence, then 𝜓 takes place. Identical to pm2.6 183. Proposition 46 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) | ||
Theorem | frege47 39093 | Deduce consequence follows from either path implied by a disjunction. If 𝜑, as well as 𝜓 is sufficient condition for 𝜒 and 𝜓 or 𝜑 takes place, then the proposition 𝜒 holds. Proposition 47 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜒) → ((𝜑 → 𝜒) → 𝜒))) | ||
Theorem | frege48 39094 | Closed form of syllogism with internal disjunction. If 𝜑 is a sufficient condition for the occurence of 𝜒 or 𝜓 and if 𝜒, as well as 𝜓, is a sufficient condition for 𝜃, then 𝜑 is a sufficient condition for 𝜃. See application in frege101 39206. Proposition 48 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → ((𝜒 → 𝜃) → ((𝜓 → 𝜃) → (𝜑 → 𝜃)))) | ||
Theorem | frege49 39095 | Closed form of deduction with disjunction. Proposition 49 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜒) → ((𝜓 → 𝜒) → 𝜒))) | ||
Theorem | frege50 39096 | Closed form of jaoi 846. Proposition 50 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((¬ 𝜑 → 𝜒) → 𝜓))) | ||
Theorem | frege51 39097 | Compare with jaod 848. Proposition 51 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜒) → (𝜑 → ((¬ 𝜓 → 𝜃) → 𝜒)))) | ||
Here we leverage df-ifp 1047 to partition a wff into two that are disjoint with the selector wff. Thus if we are given ⊢ (𝜑 ↔ if-(𝜓, 𝜒, 𝜃)) then we replace the concept (illegal in our notation ) (𝜑‘𝜓) with if-(𝜓, 𝜒, 𝜃) to reason about the values of the "function." Likewise, we replace the similarly illegal concept ∀𝜓𝜑 with (𝜒 ∧ 𝜃). | ||
Theorem | axfrege52a 39098 | Justification for ax-frege52a 39099. (Contributed by RP, 17-Apr-2020.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) | ||
Axiom | ax-frege52a 39099 | The case when the content of 𝜑 is identical with the content of 𝜓 and in which a proposition controlled by an element for which we substitute the content of 𝜑 is affirmed (in this specific case the identity logical function) and the same proposition, this time where we substituted the content of 𝜓, is denied does not take place. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) | ||
Theorem | frege52aid 39100 | The case when the content of 𝜑 is identical with the content of 𝜓 and in which 𝜑 is affirmed and 𝜓 is denied does not take place. Identical to biimp 207. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |