Detailed syntax breakdown of Definition df-poset
| Step | Hyp | Ref
| Expression |
| 1 | | cpo 18328 |
. 2
class
Poset |
| 2 | | vb |
. . . . . . . 8
setvar 𝑏 |
| 3 | 2 | cv 1538 |
. . . . . . 7
class 𝑏 |
| 4 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑓 |
| 6 | | cbs 17230 |
. . . . . . . 8
class
Base |
| 7 | 5, 6 | cfv 6542 |
. . . . . . 7
class
(Base‘𝑓) |
| 8 | 3, 7 | wceq 1539 |
. . . . . 6
wff 𝑏 = (Base‘𝑓) |
| 9 | | vr |
. . . . . . . 8
setvar 𝑟 |
| 10 | 9 | cv 1538 |
. . . . . . 7
class 𝑟 |
| 11 | | cple 17284 |
. . . . . . . 8
class
le |
| 12 | 5, 11 | cfv 6542 |
. . . . . . 7
class
(le‘𝑓) |
| 13 | 10, 12 | wceq 1539 |
. . . . . 6
wff 𝑟 = (le‘𝑓) |
| 14 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 15 | 14 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
| 16 | 15, 15, 10 | wbr 5125 |
. . . . . . . . . 10
wff 𝑥𝑟𝑥 |
| 17 | | vy |
. . . . . . . . . . . . . 14
setvar 𝑦 |
| 18 | 17 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑦 |
| 19 | 15, 18, 10 | wbr 5125 |
. . . . . . . . . . . 12
wff 𝑥𝑟𝑦 |
| 20 | 18, 15, 10 | wbr 5125 |
. . . . . . . . . . . 12
wff 𝑦𝑟𝑥 |
| 21 | 19, 20 | wa 395 |
. . . . . . . . . . 11
wff (𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) |
| 22 | 14, 17 | weq 1961 |
. . . . . . . . . . 11
wff 𝑥 = 𝑦 |
| 23 | 21, 22 | wi 4 |
. . . . . . . . . 10
wff ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) |
| 24 | | vz |
. . . . . . . . . . . . . 14
setvar 𝑧 |
| 25 | 24 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑧 |
| 26 | 18, 25, 10 | wbr 5125 |
. . . . . . . . . . . 12
wff 𝑦𝑟𝑧 |
| 27 | 19, 26 | wa 395 |
. . . . . . . . . . 11
wff (𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) |
| 28 | 15, 25, 10 | wbr 5125 |
. . . . . . . . . . 11
wff 𝑥𝑟𝑧 |
| 29 | 27, 28 | wi 4 |
. . . . . . . . . 10
wff ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) |
| 30 | 16, 23, 29 | w3a 1086 |
. . . . . . . . 9
wff (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
| 31 | 30, 24, 3 | wral 3050 |
. . . . . . . 8
wff
∀𝑧 ∈
𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
| 32 | 31, 17, 3 | wral 3050 |
. . . . . . 7
wff
∀𝑦 ∈
𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
| 33 | 32, 14, 3 | wral 3050 |
. . . . . 6
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
| 34 | 8, 13, 33 | w3a 1086 |
. . . . 5
wff (𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))) |
| 35 | 34, 9 | wex 1778 |
. . . 4
wff
∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))) |
| 36 | 35, 2 | wex 1778 |
. . 3
wff
∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))) |
| 37 | 36, 4 | cab 2712 |
. 2
class {𝑓 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} |
| 38 | 1, 37 | wceq 1539 |
1
wff Poset =
{𝑓 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} |