Detailed syntax breakdown of Definition df-poset
Step | Hyp | Ref
| Expression |
1 | | cpo 17940 |
. 2
class
Poset |
2 | | vb |
. . . . . . . 8
setvar 𝑏 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑏 |
4 | | vf |
. . . . . . . . 9
setvar 𝑓 |
5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑓 |
6 | | cbs 16840 |
. . . . . . . 8
class
Base |
7 | 5, 6 | cfv 6418 |
. . . . . . 7
class
(Base‘𝑓) |
8 | 3, 7 | wceq 1539 |
. . . . . 6
wff 𝑏 = (Base‘𝑓) |
9 | | vr |
. . . . . . . 8
setvar 𝑟 |
10 | 9 | cv 1538 |
. . . . . . 7
class 𝑟 |
11 | | cple 16895 |
. . . . . . . 8
class
le |
12 | 5, 11 | cfv 6418 |
. . . . . . 7
class
(le‘𝑓) |
13 | 10, 12 | wceq 1539 |
. . . . . 6
wff 𝑟 = (le‘𝑓) |
14 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
15 | 14 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
16 | 15, 15, 10 | wbr 5070 |
. . . . . . . . . 10
wff 𝑥𝑟𝑥 |
17 | | vy |
. . . . . . . . . . . . . 14
setvar 𝑦 |
18 | 17 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑦 |
19 | 15, 18, 10 | wbr 5070 |
. . . . . . . . . . . 12
wff 𝑥𝑟𝑦 |
20 | 18, 15, 10 | wbr 5070 |
. . . . . . . . . . . 12
wff 𝑦𝑟𝑥 |
21 | 19, 20 | wa 395 |
. . . . . . . . . . 11
wff (𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) |
22 | 14, 17 | weq 1967 |
. . . . . . . . . . 11
wff 𝑥 = 𝑦 |
23 | 21, 22 | wi 4 |
. . . . . . . . . 10
wff ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) |
24 | | vz |
. . . . . . . . . . . . . 14
setvar 𝑧 |
25 | 24 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑧 |
26 | 18, 25, 10 | wbr 5070 |
. . . . . . . . . . . 12
wff 𝑦𝑟𝑧 |
27 | 19, 26 | wa 395 |
. . . . . . . . . . 11
wff (𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) |
28 | 15, 25, 10 | wbr 5070 |
. . . . . . . . . . 11
wff 𝑥𝑟𝑧 |
29 | 27, 28 | wi 4 |
. . . . . . . . . 10
wff ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) |
30 | 16, 23, 29 | w3a 1085 |
. . . . . . . . 9
wff (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
31 | 30, 24, 3 | wral 3063 |
. . . . . . . 8
wff
∀𝑧 ∈
𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
32 | 31, 17, 3 | wral 3063 |
. . . . . . 7
wff
∀𝑦 ∈
𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
33 | 32, 14, 3 | wral 3063 |
. . . . . 6
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
34 | 8, 13, 33 | w3a 1085 |
. . . . 5
wff (𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))) |
35 | 34, 9 | wex 1783 |
. . . 4
wff
∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))) |
36 | 35, 2 | wex 1783 |
. . 3
wff
∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))) |
37 | 36, 4 | cab 2715 |
. 2
class {𝑓 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} |
38 | 1, 37 | wceq 1539 |
1
wff Poset =
{𝑓 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} |