MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispos Structured version   Visualization version   GIF version

Theorem ispos 17821
Description: The predicate "is a poset." (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 4-Nov-2013.)
Hypotheses
Ref Expression
ispos.b 𝐵 = (Base‘𝐾)
ispos.l = (le‘𝐾)
Assertion
Ref Expression
ispos (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐾(𝑥,𝑦,𝑧)

Proof of Theorem ispos
Dummy variables 𝑝 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6717 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
2 ispos.b . . . . . . 7 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2796 . . . . . 6 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
43eqeq2d 2748 . . . . 5 (𝑝 = 𝐾 → (𝑏 = (Base‘𝑝) ↔ 𝑏 = 𝐵))
5 fveq2 6717 . . . . . . 7 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
6 ispos.l . . . . . . 7 = (le‘𝐾)
75, 6eqtr4di 2796 . . . . . 6 (𝑝 = 𝐾 → (le‘𝑝) = )
87eqeq2d 2748 . . . . 5 (𝑝 = 𝐾 → (𝑟 = (le‘𝑝) ↔ 𝑟 = ))
94, 83anbi12d 1439 . . . 4 (𝑝 = 𝐾 → ((𝑏 = (Base‘𝑝) ∧ 𝑟 = (le‘𝑝) ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))) ↔ (𝑏 = 𝐵𝑟 = ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))))
1092exbidv 1932 . . 3 (𝑝 = 𝐾 → (∃𝑏𝑟(𝑏 = (Base‘𝑝) ∧ 𝑟 = (le‘𝑝) ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))) ↔ ∃𝑏𝑟(𝑏 = 𝐵𝑟 = ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))))
11 df-poset 17820 . . 3 Poset = {𝑝 ∣ ∃𝑏𝑟(𝑏 = (Base‘𝑝) ∧ 𝑟 = (le‘𝑝) ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))}
1210, 11elab4g 3592 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∃𝑏𝑟(𝑏 = 𝐵𝑟 = ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))))
132fvexi 6731 . . . 4 𝐵 ∈ V
146fvexi 6731 . . . 4 ∈ V
15 raleq 3319 . . . . . 6 (𝑏 = 𝐵 → (∀𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
1615raleqbi1dv 3317 . . . . 5 (𝑏 = 𝐵 → (∀𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
1716raleqbi1dv 3317 . . . 4 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
18 breq 5055 . . . . . . 7 (𝑟 = → (𝑥𝑟𝑥𝑥 𝑥))
19 breq 5055 . . . . . . . . 9 (𝑟 = → (𝑥𝑟𝑦𝑥 𝑦))
20 breq 5055 . . . . . . . . 9 (𝑟 = → (𝑦𝑟𝑥𝑦 𝑥))
2119, 20anbi12d 634 . . . . . . . 8 (𝑟 = → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥 𝑦𝑦 𝑥)))
2221imbi1d 345 . . . . . . 7 (𝑟 = → (((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ↔ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦)))
23 breq 5055 . . . . . . . . 9 (𝑟 = → (𝑦𝑟𝑧𝑦 𝑧))
2419, 23anbi12d 634 . . . . . . . 8 (𝑟 = → ((𝑥𝑟𝑦𝑦𝑟𝑧) ↔ (𝑥 𝑦𝑦 𝑧)))
25 breq 5055 . . . . . . . 8 (𝑟 = → (𝑥𝑟𝑧𝑥 𝑧))
2624, 25imbi12d 348 . . . . . . 7 (𝑟 = → (((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
2718, 22, 263anbi123d 1438 . . . . . 6 (𝑟 = → ((𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
2827ralbidv 3118 . . . . 5 (𝑟 = → (∀𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
29282ralbidv 3120 . . . 4 (𝑟 = → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
3013, 14, 17, 29ceqsex2v 3459 . . 3 (∃𝑏𝑟(𝑏 = 𝐵𝑟 = ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
3130anbi2i 626 . 2 ((𝐾 ∈ V ∧ ∃𝑏𝑟(𝑏 = 𝐵𝑟 = ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
3212, 31bitri 278 1 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  wral 3061  Vcvv 3408   class class class wbr 5053  cfv 6380  Basecbs 16760  lecple 16809  Posetcpo 17814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-iota 6338  df-fv 6388  df-poset 17820
This theorem is referenced by:  ispos2  17822  posi  17824  0pos  17828  0posOLD  17829  isposd  17830  isposi  17831  pospropd  17833  resspos  30963
  Copyright terms: Public domain W3C validator