MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispos Structured version   Visualization version   GIF version

Theorem ispos 18211
Description: The predicate "is a poset". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 4-Nov-2013.)
Hypotheses
Ref Expression
ispos.b 𝐡 = (Baseβ€˜πΎ)
ispos.l ≀ = (leβ€˜πΎ)
Assertion
Ref Expression
ispos (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))))
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐡   π‘₯, ≀ ,𝑦,𝑧
Allowed substitution hints:   𝐾(π‘₯,𝑦,𝑧)

Proof of Theorem ispos
Dummy variables 𝑝 𝑏 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6846 . . . . . . 7 (𝑝 = 𝐾 β†’ (Baseβ€˜π‘) = (Baseβ€˜πΎ))
2 ispos.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
31, 2eqtr4di 2791 . . . . . 6 (𝑝 = 𝐾 β†’ (Baseβ€˜π‘) = 𝐡)
43eqeq2d 2744 . . . . 5 (𝑝 = 𝐾 β†’ (𝑏 = (Baseβ€˜π‘) ↔ 𝑏 = 𝐡))
5 fveq2 6846 . . . . . . 7 (𝑝 = 𝐾 β†’ (leβ€˜π‘) = (leβ€˜πΎ))
6 ispos.l . . . . . . 7 ≀ = (leβ€˜πΎ)
75, 6eqtr4di 2791 . . . . . 6 (𝑝 = 𝐾 β†’ (leβ€˜π‘) = ≀ )
87eqeq2d 2744 . . . . 5 (𝑝 = 𝐾 β†’ (π‘Ÿ = (leβ€˜π‘) ↔ π‘Ÿ = ≀ ))
94, 83anbi12d 1438 . . . 4 (𝑝 = 𝐾 β†’ ((𝑏 = (Baseβ€˜π‘) ∧ π‘Ÿ = (leβ€˜π‘) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§))) ↔ (𝑏 = 𝐡 ∧ π‘Ÿ = ≀ ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)))))
1092exbidv 1928 . . 3 (𝑝 = 𝐾 β†’ (βˆƒπ‘βˆƒπ‘Ÿ(𝑏 = (Baseβ€˜π‘) ∧ π‘Ÿ = (leβ€˜π‘) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§))) ↔ βˆƒπ‘βˆƒπ‘Ÿ(𝑏 = 𝐡 ∧ π‘Ÿ = ≀ ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)))))
11 df-poset 18210 . . 3 Poset = {𝑝 ∣ βˆƒπ‘βˆƒπ‘Ÿ(𝑏 = (Baseβ€˜π‘) ∧ π‘Ÿ = (leβ€˜π‘) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)))}
1210, 11elab4g 3639 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ βˆƒπ‘βˆƒπ‘Ÿ(𝑏 = 𝐡 ∧ π‘Ÿ = ≀ ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)))))
132fvexi 6860 . . . 4 𝐡 ∈ V
146fvexi 6860 . . . 4 ≀ ∈ V
15 raleq 3308 . . . . . 6 (𝑏 = 𝐡 β†’ (βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)) ↔ βˆ€π‘§ ∈ 𝐡 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§))))
1615raleqbi1dv 3306 . . . . 5 (𝑏 = 𝐡 β†’ (βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)) ↔ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§))))
1716raleqbi1dv 3306 . . . 4 (𝑏 = 𝐡 β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§))))
18 breq 5111 . . . . . . 7 (π‘Ÿ = ≀ β†’ (π‘₯π‘Ÿπ‘₯ ↔ π‘₯ ≀ π‘₯))
19 breq 5111 . . . . . . . . 9 (π‘Ÿ = ≀ β†’ (π‘₯π‘Ÿπ‘¦ ↔ π‘₯ ≀ 𝑦))
20 breq 5111 . . . . . . . . 9 (π‘Ÿ = ≀ β†’ (π‘¦π‘Ÿπ‘₯ ↔ 𝑦 ≀ π‘₯))
2119, 20anbi12d 632 . . . . . . . 8 (π‘Ÿ = ≀ β†’ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) ↔ (π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯)))
2221imbi1d 342 . . . . . . 7 (π‘Ÿ = ≀ β†’ (((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ↔ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
23 breq 5111 . . . . . . . . 9 (π‘Ÿ = ≀ β†’ (π‘¦π‘Ÿπ‘§ ↔ 𝑦 ≀ 𝑧))
2419, 23anbi12d 632 . . . . . . . 8 (π‘Ÿ = ≀ β†’ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) ↔ (π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧)))
25 breq 5111 . . . . . . . 8 (π‘Ÿ = ≀ β†’ (π‘₯π‘Ÿπ‘§ ↔ π‘₯ ≀ 𝑧))
2624, 25imbi12d 345 . . . . . . 7 (π‘Ÿ = ≀ β†’ (((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§) ↔ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)))
2718, 22, 263anbi123d 1437 . . . . . 6 (π‘Ÿ = ≀ β†’ ((π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)) ↔ (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))))
2827ralbidv 3171 . . . . 5 (π‘Ÿ = ≀ β†’ (βˆ€π‘§ ∈ 𝐡 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)) ↔ βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))))
29282ralbidv 3209 . . . 4 (π‘Ÿ = ≀ β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))))
3013, 14, 17, 29ceqsex2v 3501 . . 3 (βˆƒπ‘βˆƒπ‘Ÿ(𝑏 = 𝐡 ∧ π‘Ÿ = ≀ ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§))) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)))
3130anbi2i 624 . 2 ((𝐾 ∈ V ∧ βˆƒπ‘βˆƒπ‘Ÿ(𝑏 = 𝐡 ∧ π‘Ÿ = ≀ ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)))) ↔ (𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))))
3212, 31bitri 275 1 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  βˆ€wral 3061  Vcvv 3447   class class class wbr 5109  β€˜cfv 6500  Basecbs 17091  lecple 17148  Posetcpo 18204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5267
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-iota 6452  df-fv 6508  df-poset 18210
This theorem is referenced by:  ispos2  18212  posi  18214  0pos  18218  0posOLD  18219  isposd  18220  isposi  18221  pospropd  18224  resspos  31882
  Copyright terms: Public domain W3C validator