MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsex2v Structured version   Visualization version   GIF version

Theorem ceqsex2v 3488
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) Avoid ax-10 2135 and ax-11 2152. (Revised by Gino Giotto, 20-Aug-2023.)
Hypotheses
Ref Expression
ceqsex2v.1 𝐴 ∈ V
ceqsex2v.2 𝐵 ∈ V
ceqsex2v.3 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsex2v.4 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ceqsex2v (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)

Proof of Theorem ceqsex2v
StepHypRef Expression
1 3anass 1095 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
21exbii 1848 . . . 4 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ ∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
3 19.42v 1955 . . . 4 (∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
42, 3bitri 275 . . 3 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
54exbii 1848 . 2 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
6 ceqsex2v.1 . . 3 𝐴 ∈ V
7 ceqsex2v.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
87anbi2d 630 . . . 4 (𝑥 = 𝐴 → ((𝑦 = 𝐵𝜑) ↔ (𝑦 = 𝐵𝜓)))
98exbidv 1922 . . 3 (𝑥 = 𝐴 → (∃𝑦(𝑦 = 𝐵𝜑) ↔ ∃𝑦(𝑦 = 𝐵𝜓)))
106, 9ceqsexv 3484 . 2 (∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)) ↔ ∃𝑦(𝑦 = 𝐵𝜓))
11 ceqsex2v.2 . . 3 𝐵 ∈ V
12 ceqsex2v.4 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
1311, 12ceqsexv 3484 . 2 (∃𝑦(𝑦 = 𝐵𝜓) ↔ 𝜒)
145, 10, 133bitri 297 1 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wex 1779  wcel 2104  Vcvv 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089  df-ex 1780  df-clel 2814
This theorem is referenced by:  ceqsex3v  3489  ceqsex4v  3490  ispos  18077  elfuns  34262  brimg  34284  brapply  34285  brsuccf  34288  brrestrict  34296  dfrdg4  34298  diblsmopel  39227
  Copyright terms: Public domain W3C validator